Return to search

Studies of a Variable Voltage PEM Fuel Cell Stack

In this paper a proton exchange membrane fuel cell (called PEMFC)
stack was developed to power or charge 3C products without any voltage
transformer. PEMFC stacks made with traditional bipolar plates to
generate a high voltage are usually by accumulating multiple single fuel
cells together. The design with traditional heavy and large bipolar plates
is inconvenient for 3C products to generate a high voltage in a finite
volume. To solve this problem, a heterogeneous carbon fiber bunch
unipolar plate is adopted to replace traditional bipolar plates, and a
special membrane electrode assembly (called MEA) with multiple sets of
banded electrodes is used to replace a traditional MEA that is made with
only a set electrodes. With this new design, the fuel cell voltage can
easily increase in a layer. The designed stack can provide multiple
voltages and currents by proper series and/or parallel connections.
The variable voltage 16-cell fuel cell is composed of 4-layer
4-banded type MEAs and 5 heterogeneous carbon fiber bunch bipolar
plates. The 16-cell stack is divided into 4 sets. Each set of 4 series
connection cell is arranged in a line in 4 different layers. The 4-cell sets
can connect by series/parallel on the two ends of the stack. The total
volume of the 16-cell stack is 385cm3 and its weight is 365g. The new
design can power or charge certain 3C products directly.
If 2 sets of 4-cell fuel cells are connected in series, the stack can
provide 2A at 3.6V. With the above 2 sets of 2*4-cell connected in
parallel, the stack can provide 3.5A at 3.6V. If the 4 sets of 4-cell are all
connected in series, the stack can provide 1.8 A at 7.2V. These voltages
and currents derived from these stacks can power or charge a mobile
phone, a photo camera and a video camera directly. If a higher voltage or
current are needed, two or more 16-cell stacks can be connected in series
XI
or parallel. Then notebooks or any other 3C products in which higher
power are needed can be driven.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-1013109-170143
Date13 October 2009
CreatorsSu, You-Min
ContributorsInn-chyn Her, Ming-San Lee, Chong-Fu Liou, Peng-sheng Wei, Long-Jeng Chen
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-1013109-170143
Rightsnot_available, Copyright information available at source archive

Page generated in 0.0021 seconds