Les systèmes de biorétention sont de plus en plus utilisés pour gérer le ruissellement des eaux pluviales urbaines. Bien que les plantes soient une composante essentielle des biorétentions, il existe à ce jour peu de preuves de la contribution des espèces choisies, en particulier dans les climats tempérés à grande variation saisonnière. Aussi, les bactéries et les champignons peuvent jouer un rôle majeur dans la performance des biorétentions en améliorant la qualité de l'eau ou en soutenant l'efficacité des plantes. Mais à ce jour, on sait peu de choses sur les microorganismes peuplant les biorétentions et encore moins sur l'influence des choix de conception de ce système et ses conséquences sur la contribution de ces organismes. D’autre part, en climat froid, l'utilisation de sels de déglaçage génère des ruissellements salins qui pourraient affecter les performances des biorétentions, notamment en impactant les processus biologiques en cours dans le système.
Le but de mon étude était de comparer la contribution de la végétation à la performance des biorétentions en fonction de l'espèce plantée, de tester l'impact du ruissellement salin sur l'hydrologie et la filtration des contaminants par le système en fonction des espèces végétales utilisées, et de caractériser l'influence de ces 2 facteurs sur la diversité, la composition et l'abondance relative des bactéries et champignons au sein des biorétentions.
J’ai réalisé une expérience en mésocosmes avec 4 espèces végétales couramment utilisées en biorétention et couvrant un large éventail de types biologiques (Cornus sericea, Juncus effusus, Iris versicolor, Sesleria autumnalis). Pour simuler un ruissellement printanier chargé en sel de déglaçage, l'eau de ruissellement semi-synthétique utilisée pour l'irrigation à était complétée au printemps avec quatre concentrations de NaCl (0, 250, 1000 ou 4000 mg Cl/L). Le séquençage des gènes 16S et ITS ont été utilisé comme indicateur de diversité, de composition et d'abondance relative bactérienne et fongique.
En général, tous les mésocosmes de biorétention ont significativement réduit les volumes d'eau, les débits de pointe et les charges de contaminants. Certaines plantes améliorent significativement les performances en augmentant la perte d'eau par évapotranspiration pendant la période de croissance (jusqu'à 2,5 fois) et en réduisant le débit d'eau (jusqu'à 2,7 fois). Les plantes ont amélioré l’enlèvement des macronutriments, avec un enlèvement massique moyen de 55 % pour l’Azote total, 81 % pour le Phosphore total et 61 % pour le K, contre -6 % (relargage), 61 % et 22 % respectivement pour les non plantés. À l'exception des Sesleria, l’enlèvement des éléments traces par les mésocosmes plantés était généralement plus élevée que chez les non plantés (jusqu'à 8,7 %). Leur niveau de contribution suivait le même ordre que leur taux d'évapotranspiration et leur taille globale (Cornus > Juncus > Iris > Sesleria). Même à la concentration la plus élevée de NaCl testée, aucun effet sur la réduction du volume d'eau et les débits n'a été détecté. En revanche, le ruissellement chargé en sel a temporairement augmenté l’enlèvement de certains métaux tels que Cr, Ni, Pb et Zn. Dans l’ensemble, les plantes ont très bien toléré le passage du ruissellement chargé de sel au printemps. Tous les mésocosmes ont naturellement été colonisés par des bactéries et des champignons adaptés à un environnement humide et contaminé. Parmi les taxons dominants, plusieurs ont des fonctions en lien avec la performance des biorétentions, telles que l'implication dans le cycle de l'azote, la dégradation des hydrocarbures, la tolérance et la remédiation de métaux, ou des symbiotes végétaux.
Ma thèse souligne l'importance du choix des espèces végétales sur la performance des biorétentions. D’une part en raison de leur contribution différentielle à la réduction du volume d'eau, des débits de pointe et l'enlèvement des contaminants, en particulier des macronutriments, et d’autre part à cause de leur influence sur la composition et l’abondance des microorganismes. Même si plusieurs des bactéries et champignons dominants ce système auraient la capacité de contribuer à la performance des biorétentions, d’autres études devront être menées pour vérifier leur activité. Finalement, ma thèse a démontré que la présence de sel de déverglaçage dans le ruissellement ne devrait pas être un frein à la mise en place de cellules de biorétention, puisque qu'aux concentrations habituellement observées à la suite d’épandages, aucun effet négatif sur la performance, la végétation ou les communautés bactérienne et fongique n’a été observé dans la présente thèse. Cependant, la libération des cations structurants du sol et l’exfiltration du sels devrait être faire l’objet d’un suivi à plus long terme.
Bien que ces expériences aient permis d'analyser l'effet des espèces végétales et des sels de déverglaçage sur la réduction du volume d'eau, des débits de pointe, l’enlèvement des contaminants, et les micro-organismes, l'extrapolation de ces résultats à grande échelle doit être effectuée avec prudence. En effet, les mésocosmes sont des systèmes artificiels qui ne reproduisent pas entièrement les conditions réelles des biorétentions à grande échelle, notamment en ce qui concerne les températures hivernales inférieures à zéro, et ne sont étudiés qu’un lapse de temps. Aussi, les biorétentions réelles sont rarement plantées en monoculture, de sorte que les interactions entre les espèces végétales et les microorganismes pourraient influencer la performance du système. Pour une application réussie des conclusions de cette étude à l'échelle pratique, il serait essentiel que des projets pilotes valident ces résultats. / Bioretention systems are increasingly used to manage urban stormwater runoff. Plants are an essential component of bioretention, improving water quality and reducing runoff volume and peak flows. Although plants are an essential component of bioretentions, there is little evidence on how their contribution changes according to the species chosen, especially in temperate climates with large seasonal variations. In addition, bacteria and fungi could play a major role in bioretention performance by improving water quality or supporting plant efficiency. But to date, little is known about the microorganisms living in bioretentions and even less about the influence of the design choices of this system and therefore its consequences on the contribution of these organisms. In cold climates, the use of de-icing salts generates saline runoff which could affect the bioretentions performance, especially by reducing biological processes.
The aim of my study was to compare the contribution of vegetation to the performance of bioretentions according to the species planted, to test the impact of saline runoff on the hydrology and the filtration of contaminants by the system according to the plant species used, and to characterize the influence of these 2 factors on the diversity, composition and relative abundance of bacteria and fungi within bioretentions.
I performed a mesocosm experiment with 4 plant species commonly used in bioretention and covering a wide range of biological types (Cornus sericea, Juncus effusus, Iris versicolor, Sesleria autumnalis). To simulate spring salt-laden runoffs, the semi-synthetic runoff water used for irrigation was supplemented in spring with four concentrations of NaCl (0, 250, 1000 or 4000 mg Cl/L). Sequencing of 16S and ITS genes was used as bacterial and fungal diversity, composition and relative abondance indicator.
In general, all bioretention mesocosms significantly reduced water volumes, peak flows, and contaminant loads. Some plants significantly increased the performances, by increasing water loss through evapotranspiration during the growing period (up to 2.5 times) and reducing water flow (up to 2.7 times). Plants improved macronutrients removal, with an average mass removal of 55% for total nitrogen, 81% for total phosphorus and 61% for K compared to –6% (release), 61% and 22% respectively for the unplanted. Except for Sesleria, mass removal of trace elements in planted mesocosms was generally higher than in unplanted ones (up to 8.7%). Their contribution level followed the same order as their evapotranspiration rate and overall size (Cornus > Juncus > Iris > Sesleria). Even at the highest concentration of NaCl tested, no impact on water volume reduction and flow rates were detected. In contrast, salt-laden runoffs temporarily increased removal of some metals such as Cr, Ni, Pb, and Zn. Overall, the plants tolerated the passage of salt runoff in spring. All bioretention mesocosms were naturally colonized by bacteria and fungi adapted to a humid and contaminated environment. Among the dominant taxa, several described functions related to the bioretention performances, such as involvement in the nitrogen cycle, the degradation of hydrocarbons, the tolerance and remediation of metals, or plant symbionts.
My thesis emphasizes the importance of the plant species choice on the bioretentions performance. firstly because of their differential contribution to the water volume reduction, peak flows, and the contaminants removal, in particular macronutrients, secondly through their influence on the composition and abundance of microorganisms. Even though several of the dominant bacteria and fungi found would have the ability to contribute to the performance of bioretentions, further studies will be needed to verify their activity. Finally, my thesis demonstrated that the presence of de-icing salt in the runoff should not be a hindrance to the bioretention cells implementation, since at concentrations usually observed following salt spreading, no negative effect on the bioretentions performance, on the vegetation or the bacterial and fungal communities were observed in this thesis. However, the release of soil-structuring cations as well as salts exfiltration should be monitored in the longer term.
Although these experiments allowed for the analysis of the effect of plant species and de-icing salts on the reduction of water volume, peak flow rates, contaminant removal, and microorganisms, the extrapolation of these results to a larger scale must be done with caution. Despite the advantage of characterizing the performance of bioretention in mesocosms in terms of replication and factor control, it is important to recognize that this approach also has its limitations. Mesocosms are artificial systems that do not fully replicate the real-world conditions of large-scale bioretention, especially concerning sub-zero winter temperatures and the limited time frame of study. The size of the mesocosms could lead to edge effects, such as preferential flows, while real-world scenarios involve slopes that create heterogeneous conditions within these basins, influencing factors like frequency and quantity of water received. Additionally, real bioretention systems are seldom planted as monocultures, thus interactions between plant species and microorganisms may impact system performance. For successful implementation of the findings of this study on a practical scale, validation through pilot projects would be essential.
Identifer | oai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/32130 |
Date | 05 1900 |
Creators | Beral, Henry |
Contributors | Brisson, Jacques, Dagenais, Danielle, Kõiv-Vainik, Margit |
Source Sets | Université de Montréal |
Language | fra |
Detected Language | French |
Type | thesis, thèse |
Format | application/pdf |
Page generated in 0.0036 seconds