Le présent manuscrit est composé de deux parties relativement indépendantes.La première partie est consacrée au problème de la stéréovision binoculaire, et plus particulièrement au traitement de l'occultation. En partant d'une analyse de ce phénomène, nous en déduisons un modèle de régularité qui inclut une contrainte convexe de visibilité. La fonctionnelle d'énergie qui en résulte est minimisée par relaxation convexe. Les zones occultées sont alors détectées grâce à la pente horizontale de la carte de disparité avant d'être densifiées.Une autre méthode gérant l'occultation est la méthode des graph cuts proposée par Kolmogorov et Zabih. L'efficacité de cette méthode justifie son adaptation à deux problèmes auxiliaires rencontrés en stéréovision, qui sont la densification de cartes éparses et le raffinement subpixellique de cartes pixelliques.La seconde partie de ce manuscrit traite de manière plus générale de deux algorithmes d'optimisation convexe, pour lequels deux variantes accélérées sont proposées. Le premier est la méthode des directions alternées (ADMM). On montre qu'un léger relâchement de contraintes dans les paramètres de cette méthode permet d'obtenir un taux de convergence théorique plus intéressant.Le second est un algorithme de descentes proximales alternées, qui permet de paralléliser la résolution approchée du problème Rudin-Osher-Fatemi (ROF) de débruitage pur dans le cas des images couleurs. Une accélération de type FISTA est également proposée. / This thesis is splitted into two relatively independant parts. The first part is devoted to the binocular stereovision problem, specifically to the occlusion handling. An analysis of this phenomena leads to a regularity model which includes a convex visibility constraint. The resulting energy functional is minimized by convex relaxation. The occluded areas are then detected thanks to the horizontal slope of the disparity map and densified. Another method with occlusion handling was proposed by Kolmogorov and Zabih. Because of its efficiency, we adapted it to two auxiliary problems encountered in stereovision, namely the densification of sparse disparity maps and the subpixel refinement of pixel-accurate maps.The second part of this thesis studies two convex optimization algorithms, for which an acceleration is proposed. The first one is the Alternating Direction Method of Multipliers (ADMM). A slight relaxation in the parameter choice is shown to enhance the convergence rate. The second one is an alternating proximal descent algorithm, which allows a parallel approximate resolution of the Rudin-Osher-Fatemi (ROF) pure denoising model, in color-image case. A FISTA-like acceleration is also proposed.
Identifer | oai:union.ndltd.org:theses.fr/2016SACLX092 |
Date | 28 November 2016 |
Creators | Tan, Pauline |
Contributors | Université Paris-Saclay (ComUE), Chambolle, Antonin, Monasse, Pascal |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.002 seconds