Return to search

Fault Location on the High Voltage Series Compensated Power Transmission Networks

Nowadays power transmission networks are capable of delivering contracted power from any supplier to any consumer over a large geographic area under market control, and thus transmission lines are incorporated with FACTs series compensated devices to increase the power transfer capability with improvement to system integrity. Conventional fault location methods developed in the past many years are not suitable for FACTs transmission networks. The obvious reason is that FACTs devices in transmission networks introduce non-linearity in the system and hence linear fault detection methods are no longer valid. Therefore, it is still a matter of research to investigate developing new fault detection techniques to cater for modern transmission network configurations and solve implementation issues maintaining required accuracy. This PhD research work is based on developing an accurate and robust new fault location algorithm for series compensated high voltage transmission lines, considering many issues such as transmission line models, configurations with series compensation features. Building on the existing knowledge, a new algorithm has been developed for the estimation of fault location using the time domain approach. In this algorithm, instantaneous fault signals from the transmission line ends are measured and applied to the algorithm to calculate the distance to fault. The new algorithm was tested on two port transmission line model developed using EMTP/ATP software and measured fault data from the simulations are exported to the MATLAB space to run the algorithm. Broad range of faults has been simulated considering various fault cases to test the algorithm and statistical results obtained. It was observed that the accuracy of location of fault on series compensated transmission line using this algorithm is in the range from 99.7 % to 99.9% in 90% of fault cases. In addition, this algorithm was further improved considering many practical issues related to modern series compensated transmission lines (with TCSC var compensators) achieving similar accuracies in the estimation of fault location.

Identiferoai:union.ndltd.org:ADTP/235187
Date January 2007
CreatorsKapuduwage, Sarath, skapuduwage@hotmail.com
PublisherRMIT University. Electrical and Computer Engineering
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
Rightshttp://www.rmit.edu.au/help/disclaimer, Copyright Sarath Kapuduwage

Page generated in 0.002 seconds