Local tissue factors, ischemia and infection (which are often the cause of re-ulceration) are the main pathogenetic factors for diabetic foot disease (DFD). Neuropathic bone metabolism disorder leads to Charcot osteoarthropathy (CHOA). The aim of this dissertation was to assess experimentally the effectiveness of new skin substitutes, evaluate local vasculogenesis in different types of cell therapy of DFD, the role of infection in recurrence of DFD and scintigraphic parameters of activity of CHOA. Our studies concerning local pathological processes in DFD experimentally proved that gelatine nanofibers accelerate wound healing and can be suitable scaffolds for cell transfer and skin regeneration and also that acellular porcine dermis is more effective in healing of chronic wounds then xenotransplants. Our studies concerning therapeutic vasculogenesis confirmed that efficacy of stem cells (SC) harvested from bone marrow is similar in efficacy to SC separated from peripheral blood after stimulation. We found no evidence for systemic vasculogenesis by means of a significant increase of pro-angiogenic cytokines, which confirms the paracrine effect of injected SC. We proved a significant correlation between angiogeneisis inhibitor (endostatin) and the number of injected SC, which could be an indicator of...
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:327186 |
Date | January 2013 |
Creators | Dubský, Michal |
Contributors | Jirkovská, Alexandra, Rušavý, Zdeněk, Karetová, Debora |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.002 seconds