Return to search

Tailoring Siloxane Functionality for Lithography-based 3D Printing

Polymer synthesis and functionalization enabled the tailoring of polymer functionality for additive manufacturing (AM), elastomer, and biological applications. Inspiration from academic and patent literature prompted an emphasis on polymer functionality and its implications on diverse applications. Critical analysis of existing elastomers for AM aided the synthesis and characterization of novel photopolymer systems for lithography-based 3D printing. Emphasis on structure-processing-property relationships facilitated the attainment of success in proposed applications and prompted further fundamental understanding for systems that leveraged poly(dimethyl siloxane)s (PDMS), aliphatic polyesters, polyamides, and polyethers for emerging applications.

The thiol-ene reaction possesses many desirable traits for vat photopolymerization (VP) AM, namely that it proceeds rapidly to high yield, does not undergo significant side reactions, remains tolerant of the presence of water or oxygen, and remains regiospecific. Leveraging these traits, a novel PDMS-based photopolymer system was synthesized and designed that underwent simultaneous chain extension and crosslinking, affording relatively low viscosity prior to photocuring but the modulus and tensile strain at break properties of higher molecular weight precursors upon photocuring. A monomeric competition study confirmed chemical preference for the chain-extension reaction in the absence of diffusion. Photocalorimetry, photorheology, and soxhlet extraction measured photocuring kinetics and demonstrated high gel fractions upon photocuring. A further improvement on the low-temperature elastomeric behavior occurred via introduction of a small amount of diphenylsiloxane or diethylsiloxane repeating units, which successfully suppressed crystallization and extended the rubbery plateau close to the glass transition temperature (Tg) for these elastomers. Finally, a melt polymerization of PDMS diamines in the presence of a disiloxane diamine chain extender and urea afforded isocyanate-free polyureas in the absence of solvent and catalyst. Dynamic mechanical analysis (DMA) measured multiple, distinct α-relaxations that suggested microphase separation. This work leverages the unique properties of PDMS and provides multiple chemistries that achieve elastomeric properties for a variety of applications.

Similar work of new polymers for VP AM was performed that leveraged the low Tg poly(propylene glycol) (PPG) and poly(tri(ethylene glycol) adipate) (PTEGA) for use in tissue scaffolding, footwear, and improved glove grip performance applications. The double endcapping of a PPG diamine with a diisocyanate and then hydroxyethyl acrylate provided a urethane/urea-containing, photocurable oligomer. Supercritical fluid chromatography with evaporative light scattering detection elucidated oligomer molecular weight distributions with repeat unit resolution, while the combination of these PPG-containing oligomers with various reactive diluents prior to photocuring yielded highly tunable and efficiently crosslinked networks with wide-ranging thermomechanical properties. Functionalization of the PTEGA diol with isocyanatoethyl methacrylate yielded a photocurable polyester for tissue scaffolding applications without the production of acidic byproducts that might induce polymer backbone scission. Initial VP AM, cell viability experiments, and modulus measurements indicate promise for use of these PTEGA oligomers for the 3D production of vascularized tissue scaffolds.

Similar review of powder bed fusion (PBF) patent literature revealed a polyamide 12 (PA12) composition that remained melt stable during PBF processing, unlike alternative commercial products. Further investigation revealed a fundamental difference in polymer backbone and endgroup chemical structure between these products, yielding profound differences for powder recyclability after printing. An anionic dispersion polymerization of laurolactam in the presence of a steric stabilizer and initiator yielded PA12 microparticles with high sphericity directly from the polymerization without significant post-processing requirements. Steric stabilizer concentration and stirring rate remained the most important variables for the control of PA12 powder particle size and melt viscosity. Finally, preliminary fusion of single-layered PA12 structures demonstrated promise and provided insight into powder particle size and melt viscosity requirements. / PHD / Additive manufacturing (AM) enables the creation of unique geometries not accessible with alternative manufacturing techniques such as injection molding, while also reducing the waste associated with subtractive manufacturing (e.g. machining). However, AM currently suffers from a lack of commercially-available polymers that provide elastomeric properties after processing. Poly(dimethyl siloxane)s (PDMS) possess distinctive properties due to their organosilicon polymer backbone that include chemical inertness, non-flammability, high gas permeability, and low surface energy. For these reasons, siloxanes enjoy wide-ranging applications from personal care products, contact lenses, elastomeric sealants, and medical devices. This dissertation focuses on the synthesis and functionalization of novel PDMS-, polyether-, polyester-, and polyamide-containing photopolymers or powders for improved performance in diverse applications that employ processing via vat photopolymerization (VP) or powder bed fusion (PBF) AM.

Examples from this work include a novel photopolymer composition that undergoes simultaneous chain extension and crosslinking, affording low molecular weight and low viscosity precursors prior to VP-AM but the properties of higher molecular weight precursors, once photocured. Related work involved the characterization and VP-AM of siloxane terpolymers that suppress crystallization normally observed in PDMS, resulting in 3D printed objects that retain their elastomeric properties close to the glass transition temperature (Tg). Separate work leveraged the unique PDMS backbone for the melt polymerization of PDMS diamines in the presence of a chain extender and urea, yielding isocyanate-free PDMS polyureas in the absence of solvent or catalyst. This reaction creates ammonia as the only by-product and avoids the use of isocyanates, as well as their highly toxic precursors, phosgene.

Finally, another research direction facilitates the understanding of observed differences in melt stability between commercially-available grades of polyamide 12 (PA12) powders for powder bed fusion. An anionic dispersion polymerization based in the patent literature facilitated further understanding of the polymerization process and produced melt-stable PA12 microparticles directly from the polymerization process, without requiring additional post-processing grinding or precipitation steps for powder production.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/97196
Date11 September 2018
CreatorsSirrine, Justin Michael
ContributorsChemistry, Long, Timothy E., Williams, Christopher B., Davis, Richey M., Cheng, Shengfeng, Moore, Robert Bowen
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeDissertation
FormatETD, application/pdf, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0029 seconds