Made available in DSpace on 2017-07-21T14:19:30Z (GMT). No. of bitstreams: 1
Victor Schnepper Lacerda.pdf: 2047594 bytes, checksum: f0234089904caa6e03e22d3efba8394c (MD5)
Previous issue date: 2017-02-02 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Soybean cultivation is of great importance to the Brazilian economy, and one of the major obstacles to its high productivity is the Asian soybean rust, a disease caused by the fungus Phakopsora pachyrhizi. The main measure to control the damage caused by this disease is the application of fungicides at the appropriate time, but the biggest obstacle to its implementation is the difficult detection of Asian rust in its early stages.
In this sense, remote sensing combined with the use of unmanned aerial vehicles (UAVs) has potential for disease detection, especially for providing information that is hard to assess by traditional means, and for the advantages of quality and cost of this technology. The present work explores the use of unmanned aerial vehicles to detect and predict the severity of Asian soybean rust by use of digital image processing and data mining techniques for retrieval of predictive models of severity in different development stages. The models obtained showed satisfactory potential for Asian rust detection, and a high correlation between disease severity and the visible spectrum (RGB camera), as it was possible to obtain correlation coefficients greater than 93% after the R5 development stage of the soybean crop. / O cultivo da soja (Glycine max) é importante para a economia brasileira, sendo que um dos principais obstáculos à alta produtividade na lavoura é a ferrugem asiática, causada pelo fungo Phakopsora pachyrhizi. O principal fator para o controle de danos causados por essa doença é a aplicação de fungicidas em momento apropriado, porém o maior obstáculo para uso dessa medida é a difícil detecção da ferrugem asiática em estágios iniciais. Nesse sentido, o sensoriamento remoto aliado ao uso de veículos aéreos remotamente pilotados apresenta potencial para detecção da doença, principalmente por fornecer informação de difícil acesso aos meios tradicionais e pelas vantagens de qualidade e custo dessa tecnologia. O presente trabalho explora o uso de veículos aéreos remotamente pilotados para detecção e predição de severidade da ferrugem asiática da soja, associados a técnicas de processamento digital de imagens e de mineração de dados, visando a obtenção de modelos preditivos de severidade nos diferentes estágios de desenvolvimento da soja.
Os modelos obtidos demonstraram potencial para a detecção da ferrugem asiática, e uma boa correlação da severidade da doença com o espectro visível (câmera RGB), ao passo que foi possível obter coeficientes de correlação maiores que 93% utilizando o algoritmo SMOREG após o estádio R5 de desenvolvimento da cultura da soja.
Identifer | oai:union.ndltd.org:IBICT/oai:tede2.uepg.br:prefix/142 |
Date | 02 February 2017 |
Creators | Lacerda, Victor Schnepper |
Contributors | Canteri, Marcelo, Guimarães, Alaine Margarete, Gonçalves, José Eduardo, Pria, Maristella Dalla |
Publisher | UNIVERSIDADE ESTADUAL DE PONTA GROSSA, Programa de Pós Graduação Computação Aplicada, UEPG, BR, Computação para Tecnologias em Agricultura |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UEPG, instname:Universidade Estadual de Ponta Grossa, instacron:UEPG |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.002 seconds