Return to search

Sistema de hardware reconfigurável para navegação visual de veículos autônomos / Reconfigurable hardware system for autonomous vehicles visual navigation

O número de acidentes veiculares têm aumentado mundialmente e a principal causa associada a estes acidentes é a falha humana. O desenvolvimento de veículos autônomos é uma área que ganhou destaque em vários grupos de pesquisa do mundo, e um dos principais objetivos é proporcionar um meio de evitar estes acidentes. Os sistemas de navegação utilizados nestes veículos precisam ser extremamente confiáveis e robustos o que exige o desenvolvimento de soluções específicas para solucionar o problema. Devido ao baixo custo e a riqueza de informações, um dos sensores mais utilizados para executar navegação autônoma (e nos sistemas de auxílio ao motorista) são as câmeras. Informações sobre o ambiente são extraídas por meio do processamento das imagens obtidas pela câmera, e em seguida são utilizadas pelo sistema de navegação. O objetivo principal desta tese consiste do projeto, implementação, teste e otimização de um comitê de Redes Neurais Artificiais utilizadas em Sistemas de Visão Computacional para Veículos Autônomos (considerando em específico o modelo proposto e desenvolvido no Laboratório de Robótica Móvel (LRM)), em hardware, buscando acelerar seu tempo de execução, para utilização como classificadores de imagens nos veículos autônomos desenvolvidos pelo grupo de pesquisa do LRM. Dentre as contribuições deste trabalho, as principais são: um hardware configurado em um FPGA que executa a propagação do sinal em um comitê de redes neurais artificiais de forma rápida com baixo consumo de energia, comparado a um computador de propósito geral; resultados práticos avaliando precisão, consumo de hardware e temporização da estrutura para a classe de aplicações em questão que utiliza a representação de ponto-fixo; um gerador automático de look-up tables utilizadas para substituir o cálculo exato de funções de ativação em redes MLP; um co-projeto de hardware/software que obteve resultados relevantes para implementação do algoritmo de treinamento Backpropagation e, considerando todos os resultados, uma estrutura que permite uma grande diversidade de trabalhos futuros de hardware para robótica por implementar um sistema de processamento de imagens em hardware. / The number of vehicular accidents have increased worldwide and the leading associated cause is the human failure. Autonomous vehicles design is gathering attention throughout the world in industry and universities. Several research groups in the world are designing autonomous vehicles or driving assistance systems with the main goal of providing means to avoid these accidents. Autonomous vehicles navigation systems need to be reliable with real-time performance which requires the design of specific solutions to solve the problem. Due to the low cost and high amount of collected information, one of the most used sensors to perform autonomous navigation (and driving assistance systems) are the cameras.Information from the environment is extracted through obtained images and then used by navigation systems. The main goal of this thesis is the design, implementation, testing and optimization of an Artificial Neural Network ensemble used in an autonomous vehicle navigation system (considering the navigation system proposed and designed in Mobile Robotics Lab (LRM)) in hardware, in order to increase its capabilites, to be used as image classifiers for robot visual navigation. The main contributions of this work are: a reconfigurable hardware that performs a fast signal propagation in a neural network ensemble consuming less energy when compared to a general purpose computer, due to the nature of the hardware device; practical results on the tradeoff between precision, hardware consumption and timing for the class of applications in question using the fixed-point representation; a automatic generator of look-up tables widely used in hardware neural networks to replace the exact calculation of activation functions; a hardware/software co-design that achieve significant results for backpropagation training algorithm implementation, and considering all presented results, a structure which allows a considerable number of future works on hardware image processing for robotics applications by implementing a functional image processing hardware system.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-13012017-164142
Date04 October 2016
CreatorsDias, Mauricio Acconcia
ContributorsOsório, Fernando Santos
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguagePortuguese
TypeTese de Doutorado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0025 seconds