Return to search

On The Generalizations And Properties Of Abramovich-wickstead Spaces

In this thesis, we study two problems. The first problem is to introduce the general version of Abramovich-Wickstead type spaces and investigate its order properties. In particular, we study the ideals, order bounded sets, disjointness properties, Dedekind completion and the norm properties of this Riesz space. We also define a new concrete example of Riesz space-valued uniformly continuous functions, denoted by CDr0 which generalizes the original Abramovich-Wickstead space. It is also shown that similar spaces CD0 and CDw introduced earlier by Alpay and Ercan are decomposable lattice-normed spaces. The second problem is related to analytic representations of different classes of dominated operators on these spaces. Our main representation theorems say that regular linear operators on CDr0 or linear dominated operators on CD0 may be represented as the sum of integration with respect to operator-valued measure and summation operation. In the case when the operator is order continuous or bo-continuous, then these representations reduce to discrete parts.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12610166/index.pdf
Date01 November 2008
CreatorsPolat, Faruk
ContributorsAlpay, Omer Safak
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypePh.D. Thesis
Formattext/pdf
RightsTo liberate the content for public access

Page generated in 0.0017 seconds