Return to search

Uma abordagem adaptativa de learning vector quantization para classificação de dados intervalares

Submitted by João Arthur Martins (joao.arthur@ufpe.br) on 2015-03-12T17:06:49Z
No. of bitstreams: 2
Dissertacao Telmo Silva Filho.pdf: 781380 bytes, checksum: fb398deff6f8aa856428277eb3236020 (MD5)
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) / Approved for entry into archive by Daniella Sodre (daniella.sodre@ufpe.br) on 2015-03-13T13:23:59Z (GMT) No. of bitstreams: 2
Dissertacao Telmo Silva Filho.pdf: 781380 bytes, checksum: fb398deff6f8aa856428277eb3236020 (MD5)
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) / Made available in DSpace on 2015-03-13T13:23:59Z (GMT). No. of bitstreams: 2
Dissertacao Telmo Silva Filho.pdf: 781380 bytes, checksum: fb398deff6f8aa856428277eb3236020 (MD5)
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Previous issue date: 2013-02-27 / A Análise de Dados Simbólicos lida com tipos de dados complexos, capazes de modelar a
variabilidade interna dos dados e dados imprecisos. Dados simbólicos intervalares surgem
naturalmente de valores como variação de temperatura diária, pressão sanguínea, entre
outros. Esta dissertação introduz um algoritmo de Learning Vector Quantization para
dados simbólicos intervalares, que usa uma distância Euclidiana intervalar ponderada e
generalizada para medir a distância entre instâncias de dados e protótipos.
A distância proposta tem quatro casos especiais. O primeiro caso é a distância
Euclidiana intervalar e tende a modelar classes e clusters com formas esféricas. O
segundo caso é uma distância intervalar baseada em protótipos que modela subregiões
não-esféricas e de tamanhos similares dentro das classes. O terceiro caso permite à
distância lidar com subregiões não-esféricas e de tamanhos variados dentro das classes. O
último caso permite à distância modelar classes desbalanceadas, compostas de subregiões
de várias formas e tamanhos. Experimentos são feitos para avaliar os desempenhos
do Learning Vector Quantization intervalar proposto, usando todos os quatro casos da
distância proposta. Três conjuntos de dados intervalares sintéticos e um conjunto de
dados intervalares reais são usados nesses experimentos e seus resultados mostram a
utilidade de uma distância localmente ponderada.

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.ufpe.br:123456789/12439
Date27 February 2013
CreatorsSilva Filho, Telmo de Menezes e
ContributorsSouza, Renata Maria Cardoso Rodrigues de
PublisherUniversidade Federal de Pernambuco
Source SetsIBICT Brazilian ETDs
LanguageBreton
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Repositório Institucional da UFPE, instname:Universidade Federal de Pernambuco, instacron:UFPE
RightsAttribution-NonCommercial-NoDerivs 3.0 Brazil, http://creativecommons.org/licenses/by-nc-nd/3.0/br/, info:eu-repo/semantics/openAccess

Page generated in 0.0019 seconds