Return to search

Automatický výběr reprezentativních fotografií / Automatic Selection of Representative Pictures

There are billions of photos on the internet and as the size of these digital repositories grows, finding target picture becomes more and more difficult. To increase the informational quality of photo albums we propose a new method that selects representative pictures from a group of photographs using computer vision algorithms. The aim of this study is to analyze the issues about image features, image similarity, object clustering and examine the specific characteristics of photographs. Tests show that there is no universal image descriptor that can easily simulate the process of clustering performed by human vision. The thesis proposes a hybrid algorithm that combines the advantages of selected features together using a specialized multiple-step clustering algorithm. The key idea of the process is that the frequently photographed objects are more likely to be representative. Thus, with a random selection from the largest photo clusters certain representative photos are obtained. This selection is further enhanced on the basis of optimization, where photos with better photographic properties are being preferred.

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:237022
Date January 2011
CreatorsBartoš, Peter
ContributorsSvoboda, Pavel, Polok, Lukáš
PublisherVysoké učení technické v Brně. Fakulta informačních technologií
Source SetsCzech ETDs
LanguageCzech
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/masterThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0012 seconds