The thesis deals with problems of automatic detection of premature ventricular contractions in ECG records. One detection method which uses a convolutional neural network and LSTM units is implemented in the Python language. Cardiac cycles extracted from one-lead ECG were used for detection. F1 score for binary classification (PVC and normal beat) on the test dataset reached 96,41 % and 81,76 % for three-class classification (PVC, normal beat and other arrhythmias). Lastly, the accuracy of the classification is evaluated and discussed, the achieved results for binary classification are comparable to the results of methods described in different papers.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:442489 |
Date | January 2021 |
Creators | Imramovská, Klára |
Contributors | Hejč, Jakub, Ronzhina, Marina |
Publisher | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0015 seconds