abstract: There is an ever growing need for larger memories which are reliable and fast. New technologies to implement non-volatile memories which are large, fast, compact and cost-efficient are being studied extensively. One of the most promising technologies being developed is the resistive RAM (ReRAM). In ReRAM the resistance of the device varies with the voltage applied across it. Programmable metallization cells (PMC) is one of the devices belonging to this category of non-volatile memories.
In order to advance the development of these devices, there is a need to develop simulation models which replicate the behavior of these devices in circuits. In this thesis, a verilogA model for the PMC has been developed. The behavior of the model has been tested using DC and transient simulations. Experimental data obtained from testing PMC devices fabricated at Arizona State University have been compared to results obtained from simulation.
A basic memory cell known as the 1T 1R cell built using the PMC has also been simulated and verified. These memory cells have the potential to be building blocks of large scale memories. I believe that the verilogA model developed in this thesis will prove to be a powerful tool for researchers and circuit developers looking to develop non-volatile memories using alternative technologies. / Dissertation/Thesis / Masters Thesis Electrical Engineering 2014
Identifer | oai:union.ndltd.org:asu.edu/item:25806 |
Date | January 2014 |
Contributors | Bharadwaj, Vineeth (Author), Barnaby, Hugh (Advisor), Kozicki, Michael (Committee member), Mikkola, Esko (Committee member), Arizona State University (Publisher) |
Source Sets | Arizona State University |
Language | English |
Detected Language | English |
Type | Masters Thesis |
Format | 66 pages |
Rights | http://rightsstatements.org/vocab/InC/1.0/, All Rights Reserved |
Page generated in 0.0012 seconds