Return to search

Algèbres à factorisation et Topos supérieurs exponentiables / Factorisation Algebra and Exponentiable Higher Toposes

Cette these est composee de deux parties independantes ayant pour point commun l’utilisation intensive de la theorie des ∞-categories. Dans la premiere, on s’interesse aux liens entre deux approches differentes de la formalisation de la physique des particules : les algebres vertex et les algebres a factorisation a la Costello. On montre en particulier que dans le cas des theories dites topologiques, elles sont equivalentes. Plus precisement, on montre que les∞-categories de fibres vectoriels factorisant non-unitaires sur une variete algebrique complexe lisse X est equivalente a l’∞-categorie des EM-algebres non-unitaires et de dimension finie, ou M est la variete topologique associee a X. Dans la seconde, avec Mathieu Anel, nous etudions la caracterisation de l’exponentiabilite dans l’∞-categorie des ∞-topos. Nous montrons que les ∞-topos exponentiables sont ceux dont l’∞-categorie de faisceaux est continue. Une consequence notable est que l’∞-categorie des faisceaux en spectres sur un ∞-topos exponentiable est un objet dualisable de l’∞-categorie des ∞-categories cocompletes stables munie de son produit tensoriel. Ce chapitre contient aussi une construction des ∞-coends a partir de la theorie du produit tensoriel d’∞- categories cocompletes, ainsi qu’une description des ∞-categories de faisceaux sur un ∞-topos exponentiable en termes de faisceaux de Leray. / This thesis is made of two independent parts, both relying heavily on the theory of ∞-categories. In the first chapter, we approach two different ways to formalize modern particle physics, through the theory of vertex algebras and the theory of factorisation algebras a la Costello. We show in particular that in the case of ‘topological field theories’, they are equivalent. More precisely, we show that the ∞-category of non-unital factorization vector bundles on a smooth complex variety X is equivalent to the ∞-category of non-unital finite dimensional EM-algebras where M is the topological manifold associated to X. In the second one, with Mathieu Anel, we study a characterization of exponentiable objects of the∞-category of∞-toposes.We show that an ∞-topos is exponentiable if and only if its ∞-category of sheaves of spaces is continuous. An important consequence is the fact that the ∞-category of sheaves of spectra on an exponentiable ∞-topos is a dualisable object of the ∞-category of cocontinuous stable ∞-categories endowed with its usual tensor product. This chapter also includes a ix construction of∞-coends from the theory of tensor products of cocomplete∞- categories, together with a description of∞-categories of sheaves on exponentiable ∞-toposes in terms of Leray sheaves.

Identiferoai:union.ndltd.org:theses.fr/2016PA066191
Date23 September 2016
CreatorsLejay, Damien
ContributorsParis 6, Calaque, Damien, Ginot, Grégory
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish, French
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0018 seconds