Return to search

SSIM metodo taikymas didelių vaizdų analizei / SSIM method application for large image analysis

Darbe nagrinėjamas vienas iš vaizdų kokybės vertinimo metodų (metrikų) – SSIM (struktūrinio panašumo) indekso metodas bei šio metodo naudojimas tiriant didelius vaizdus. Darbo eigoje: • nustatyta kai kurių įgyvendintų SSIM indekso algoritmų problematika, vertinant aukštos raiškos vaizdus; • nustatytos gaunamų skaitinių reikšmių priklausomybės nuo tiriamų vaizdų dydžio; • pagrindžiamas vaizdo duomenų mažinimas SSIM indekso algoritmuose; • pasiūlyti tam tikri sprendimai SSIM indekso algoritmo sudarymui, skirto didelės raiškos vaizdų vertinimui; • palyginti SSIM indekso algoritmų veikimo laikai tarp skirtingų algoritmų; • sukurta programinė įranga, kuri yra pritaikyta Windows operacinei sistemai bei gali būti patogiai įdiegta kompiuteryje. Programoje: – patobulintas SSIM indekso įgyvendinimo algoritmas; – atvaizduojamas SSIM skirtumų žemėlapis; – sukurta patogi vartotojui vizualinė aplinka. Realizuota programinė įranga gali būti naudojama edukaciniais tikslais bei užsakomiesiems apdorotų vaizdų kokybės vertinimo tyrimams. / The paper analyzes one of image quality assessment methods (metrics) – SSIM (structural similarity) index method, and this method in order to analyze the large images. In work process: • problems of some SSIM index algorithms for high-resolution images have been identified; • dependence of image size and SSIM index values has been found; • some solutions for SSIM index algorithm for high-resolution images have been proposed; • the image data down sampling in SSIM index algorithms has justified; • SSIM index algorithm run times between different algorithms has been compared; • Software which is designed for MS Windows operating system and can be easily installed on the computer has been developed. In this software: – SSIM index algorithm is updated; – program Displays the SSIM index map; – User-friendly visual environment is developed. Implemented software can be used for educational purposes and commercial use for analyzing processed image quality assessment.

Identiferoai:union.ndltd.org:LABT_ETD/oai:elaba.lt:LT-eLABa-0001:E.02~2013~D_20130807_115031-16027
Date07 August 2013
CreatorsTichonov, Jevgenij
ContributorsPetkus, Tomas, Kurasova, Olga, Kazlauskas, Kazys, Slivinskas, Vytautas, Dzemyda, Gintautas, Medvedev, Viktor
PublisherLithuanian Academic Libraries Network (LABT)
Source SetsLithuanian ETD submission system
LanguageLithuanian
Detected LanguageUnknown
TypeMaster thesis
Sourcehttp://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2013~D_20130807_115031-16027

Page generated in 0.0025 seconds