No / The effect of refractive blur upon postural stability was investigated under three conditions: normal standing, standing with input from the somatosensory system disrupted and standing with input from the somatosensory and vestibular systems disrupted. Standing stability was assessed using the centre of pressure (COP) signal from force plate data in four young subjects (mean 23.9 ± 3.1 years) and five repeated sets of measurements were taken. The subjects looked straight ahead at a horizontal and vertical square wave pattern of 2.5 cycles (degree)¿1. Under each of the three test conditions, standing stability was measured with the optimal refractive correction and under binocular blur levels of 0, + 1, + 2, + 4, and + 8 D and with eyes closed. In the normal standing condition, dioptric blur had only a mild effect on postural stability. However refractive blur produced large increases in postural instability when input from one or both of the other two sensory systems were disrupted. We hypothesized that dioptric blur would have an even great effect on postural stability if the visual target used was of higher spatial frequency. This was confirmed by repeated measurements on one subject using a target of 8 cycles (degree)¿1. The study highlights the possible importance of an optimal correction to postural stability, particular in situations (or people) where input from the somatosensory and/or vestibular systems are disrupted, and where the visual surrounds are of high spatial frequency.
Identifer | oai:union.ndltd.org:BRADFORD/oai:bradscholars.brad.ac.uk:10454/6415 |
Date | 05 August 2014 |
Creators | Anand, Vijay, Buckley, John, Scally, Andy J., Elliott, David |
Source Sets | Bradford Scholars |
Language | English |
Detected Language | English |
Type | Article, No full-text in the repository |
Page generated in 0.0022 seconds