A classificação de sinais acústicos é de importância fundamental para as unidades navais e aeronavais, tanto navios e essencialmente submarinos, quanto para aeronaves com capacidade antissubmarino (P-3AM, da FAB). Neste contexto, empregou-se o método de Support Vector Machine (SVM) para realizar a classificação dos navios, com base na análise de tons característicos produzidos pelos seus sinais acústicos. Comparando os resultados decorrentes do uso de Redes Neurais Artificiais aos obtidos com uso do SVM, concluiu-se que este segundo método gerou um aumento de performance no classificador em função das características extraídas dos tons. Contudo os tempos computacionais foram considerados elevados, razão porque há a necessidade de maiores investigações para adequar o emprego do SVM em um ambiente operacional.
Identifer | oai:union.ndltd.org:IBICT/oai:agregador.ibict.br.BDTD_ITA:oai:ita.br:2008 |
Date | 07 December 2011 |
Creators | Mikey da Silva Neto |
Contributors | Rodrigo Arnaldo Scarpel |
Publisher | Instituto Tecnológico de Aeronáutica |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações do ITA, instname:Instituto Tecnológico de Aeronáutica, instacron:ITA |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0018 seconds