Malgré les avantages de l'intégration 3D, le test, le rendement et la fiabilité des Through-Silicon-Vias (TSVs) restent parmi les plus grands défis pour les systèmes 3D à base de Réseaux-sur-Puce (Network-on-Chip - NoC). Dans cette thèse, une stratégie de test hors-ligne a été proposé pour les interconnections TSV des liens inter-die des NoCs 3D. Pour le TSV Interconnect Built-In Self-Test (TSV-IBIST) on propose une nouvelle stratégie pour générer des vecteurs de test qui permet la détection des fautes structuraux (open et short) et paramétriques (fautes de délaye). Des stratégies de correction des fautes transitoires et permanents sur les TSV sont aussi proposées aux plusieurs niveaux d'abstraction: data link et network. Au niveau data link, des techniques qui utilisent des codes de correction (ECC) et retransmission sont utilisées pour protégé les liens verticales. Des codes de correction sont aussi utilisés pour la protection au niveau network. Les défauts de fabrication ou vieillissement des TSVs sont réparé au niveau data link avec des stratégies à base de redondance et sérialisation. Dans le réseau, les liens inter-die défaillante ne sont pas utilisables et un algorithme de routage tolérant aux fautes est proposé. On peut implémenter des techniques de tolérance aux fautes sur plusieurs niveaux. Les résultats ont montré qu'une stratégie multi-level atteint des très hauts niveaux de fiabilité avec un cout plus bas. Malheureusement, il n'y as pas une solution unique et chaque stratégie a ses avantages et limitations. C'est très difficile d'évaluer tôt dans le design flow les couts et l'impact sur la performance. Donc, une méthodologie d'exploration de la résilience aux fautes est proposée pour les NoC 3D mesh. / 3D technology promises energy-efficient heterogeneous integrated systems, which may open the way to thousands cores chips. Silicon dies containing processing elements are stacked and connected by vertical wires called Through-Silicon-Vias. In 3D chips, interconnecting an increasing number of processing elements requires a scalable high-performance interconnect solution: the 3D Network-on-Chip. Despite the advantages of 3D integration, testing, reliability and yield remain the major challenges for 3D NoC-based systems. In this thesis, the TSV interconnect test issue is addressed by an off-line Interconnect Built-In Self-Test (IBIST) strategy that detects both structural (i.e. opens, shorts) and parametric faults (i.e. delays and delay due to crosstalk). The IBIST circuitry implements a novel algorithm based on the aggressor-victim scenario and alleviates limitations of existing strategies. The proposed Kth-aggressor fault (KAF) model assumes that the aggressors of a victim TSV are neighboring wires within a distance given by the aggressor order K. Using this model, TSV interconnect tests of inter-die 3D NoC links may be performed for different aggressor order, reducing test times and circuitry complexity. In 3D NoCs, TSV permanent and transient faults can be mitigated at different abstraction levels. In this thesis, several error resilience schemes are proposed at data link and network levels. For transient faults, 3D NoC links can be protected using error correction codes (ECC) and retransmission schemes using error detection (Automatic Retransmission Query) and correction codes (i.e. Hybrid error correction and retransmission).For transients along a source-destination path, ECC codes can be implemented at network level (i.e. Network-level Forward Error Correction). Data link solutions also include TSV repair schemes for faults due to fabrication processes (i.e. TSV-Spare-and-Replace and Configurable Serial Links) and aging (i.e. Interconnect Built-In Self-Repair and Adaptive Serialization) defects. At network-level, the faulty inter-die links of 3D mesh NoCs are repaired by implementing a TSV fault-tolerant routing algorithm. Although single-level solutions can achieve the desired yield / reliability targets, error mitigation can be realized by a combination of approaches at several abstraction levels. To this end, multi-level error resilience strategies have been proposed. Experimental results show that there are cases where this multi-layer strategy pays-off both in terms of cost and performance. Unfortunately, one-fits-all solution does not exist, as each strategy has its advantages and limitations. For system designers, it is very difficult to assess early in the design stages the costs and the impact on performance of error resilience. Therefore, an error resilience exploration (ERX) methodology is proposed for 3D NoCs.
Identifer | oai:union.ndltd.org:theses.fr/2013GRENT001 |
Date | 11 January 2013 |
Creators | Pasca, Vladimir |
Contributors | Grenoble, Anghel, Lorena |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0242 seconds