Return to search

Réduction de dimension en apprentissage supervisé : applications à l’étude de l’activité cérébrale

L'objectif de ce travail est de développer une méthode capable de déterminer automatiquement l'état de vigilance chez l'humain. Les applications envisageables sont multiples. Une telle méthode permettrait par exemple de détecter automatiquement toute modification de l'état de vigilance chez des personnes qui doivent rester dans un état de vigilance élevée (par exemple, les pilotes ou les personnels médicaux).Dans ce travail, les signaux électroencéphalographiques (EEG) de 58 sujets dans deux états de vigilance distincts (état de vigilance haut et bas) ont été recueillis à l'aide d'un casque à 58 électrodes posant ainsi un problème de classification binaire. Afin d'envisager une utilisation de ces travaux sur une application du monde réel, il est nécessaire de construire une méthode de prédiction qui ne nécessite qu'un faible nombre de capteurs (électrodes) afin de limiter le temps de pose du casque à électrodes ainsi que son coût. Au cours de ces travaux de thèse, plusieurs approches ont été développées. Une première approche propose d'utiliser un pré-traitement des signaux EEG basé sur l'utilisation d'une décomposition en ondelettes discrète des signaux EEG afin d'extraire les contributions de chaque fréquence dans le signal. Une régression linéaire est alors effectuée sur les contributions de certaines de ces fréquences et la pente de cette régression est conservée. Un algorithme génétique est utilisé afin d'optimiser le choix des fréquences sur lesquelles la régression est réalisée. De plus, cet algorithme génétique permet la sélection d'une unique électrode.Une seconde approche est basée sur l'utilisation du Common Spatial Pattern (CSP). Cette méthode permet de définir des combinaisons linéaires des variables initiales afin d'obtenir des signaux synthétiques utiles pour la tâche de classification. Dans ce travail, un algorithme génétique ainsi que des méthodes de recherche séquentielle ont été proposés afin de sélectionner un sous groupes d'électrodes à conserver lors du calcul du CSP.Enfin, un algorithme de CSP parcimonieux basé sur l'utilisation des travaux existant sur l'analyse en composantes principales parcimonieuse a été développé.Les résultats de chacune des approches sont détaillés et comparés. Ces travaux ont aboutit sur l'obtention d'un modèle permettant de prédire de manière rapide et fiable l'état de vigilance d'un nouvel individu. / The aim of this work is to develop a method able to automatically determine the alertness state of humans. Such a task is relevant to diverse domains, where a person is expected or required to be in a particular state. For instance, pilots, security personnel or medical personnel are expected to be in a highly alert state, and this method could help to confirm this or detect possible problems. In this work, electroencephalographic data (EEG) of 58 subjects in two distinct vigilance states (state of high and low alertness) were collected via a cap with $58$ electrodes. Thus, a binary classification problem is considered. In order to use of this work on a real-world applications, it is necessary to build a prediction method that requires only a small number of sensors (electrodes) in order to minimize the time needed by the cap installation and the cap cost. During this thesis, several approaches have been developed. A first approach involves use of a pre-processing method for EEG signals based on the use of a discrete wavelet decomposition in order to extract the energy of each frequency in the signal. Then, a linear regression is performed on the energies of some of these frequencies and the slope of this regression is retained. A genetic algorithm (GA) is used to optimize the selection of frequencies on which the regression is performed. Moreover, the GA is used to select a single electrode .A second approach is based on the use of the Common Spatial Pattern method (CSP). This method allows to define linear combinations of the original variables to obtain useful synthetic signals for the task classification. In this work, a GA and a sequential search method have been proposed to select a subset of electrode which are keep in the CSP calculation.Finally, a sparse CSP algorithm, based on the use of existing work in the sparse principal component analysis, was developed.The results of the different approaches are detailed and compared. This work allows us to obtaining a reliable model to obtain fast prediction of the alertness of a new individual.

Identiferoai:union.ndltd.org:theses.fr/2013BOR15005
Date13 December 2013
CreatorsVezard, Laurent
ContributorsBordeaux 1, Chavent, Marie, Faïta-Aïnseba, Frédérique, Legrand, Pierrick
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0028 seconds