Return to search

Transition Metal-catalyzed Carbon-carbon/Carbon-heteroatom Bond Formation Reactions Utilizing Strained Ring Systems

This thesis focuses on the development of carbon-carbon/carbon-heteroatom bond forming reactions using strained ring systems under transition metal catalysis. The first chapter describes the use of bifunctional organoboron reagents with a rhodium catalyst to synthesize carbocycles through a cascade sequence. The reaction of norbornene derivatives gives vinylcyclopropane and cyclopentene products in moderate to good yield. The mechanistic proposal and insights into the reaction mechanism are presented. Preliminary results from studies toward an enantioselective sequential addition/cyclization process are described. The methodology is subsequently applied in the synthesis of a variety of polycyclic heteroaromatics using bifunctional heteroaryl boronate esters.
The second chapter describes studies toward the formation of carbon-heteroatom bonds using cyclopropane derivatives. Under a recently developed Pd(OAc)2/PhI(OAc)2 catalytic system, methylenecyclopropanes are isomerized to substituted pyridines via a sequential fragmentation/cyclization process. Under same reaction conditions, allylic acetate products are obtained from the isomerization of cyclopropanes through a similar process.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OTU.1807/19101
Date23 February 2010
CreatorsTseng, Nai-Wen
ContributorsLautens, Mark
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
Languageen_ca
Detected LanguageEnglish
TypeThesis

Page generated in 0.0015 seconds