Return to search

Modelagem do impacto da adesão à terapia anti-retroviral na dinâmica populacional de variantes de HIV-1 / Modelling the HIV-1 drug resistance and adherence during HAART (Highly active antiretroviral therapy)

Made available in DSpace on 2015-03-04T18:51:02Z (GMT). No. of bitstreams: 1
thesis_final.pdf: 4015702 bytes, checksum: 1b7693d9609ca8f10eac248354ba512e (MD5)
Previous issue date: 2008-06-06 / In Brazil, since 1996, the antiretroviral therapy - HAART, also known as ARV - has been gratuitously distributed and granted by law. Therefore, anyone who takes the therapy, can desenvolve resistance acording to the amount of adherence they had. Drug resistance is known to have mutations increases linearly with elevated adherence in viremic patients, and some might say that resistance was more common in the most adherent patients with dectable viremia. Likewise, mathematical models are used to adresss some questions regarding the ARV, as to focus the epidemiological consequences of HAART interaction with behavioural changes or interventions, and the likely course of drug resistance evolution within the individual and also between individuals. In this study, we designed a host-parasit HIV model, that put together the intra and inter-host viral dynamics to test the adherence impact and the ARV access on the amount of resistant virus presents in the population. The basic model, model I, describes the interaction between cells susceptible to infection, target cells (T), wild infected cells (Is) and resistant infected cells (Ir), wild virus (Vs) and resistent virus (Vr). The target cells are created at rate λ, die at rate d per cell, and are infected with rate Ks and Kr. Infected cells, die at rate constant δ per cell and produce virus at rate fs e and fr per cell. We set the model I with literature, from the two patients data experimentaly colected, the grafics gerated by Model-Builder program were similar to the literature. After this, equations from previous model, model I, were modified to analyse the effects of giving an antiretroviral drug. Reverse transcriptase (RT) inhibitors are used to block the ability of the virus to infect a cell, while protease inhibitors (IP) cause the liberation of non-infectious viral particles. Based on that, model II, describes the interaction between susceptible cells to infection (T), four types of infected cells - the double wild RT and IP inhibitors (Iss), the wild for RT and resistant for IP (Isr), the resistant for RT and wild for IP (Irs) and the double resistant one (Irr), and four types of free virus, Vss, Vsr, Vrs, Vrr, according to the previous denomination.The target cells also are created at rate λ, die at rate d per cell, and are infected with rate k. Infected cells, die at rate constant δ per cell and produce virus at rate fss, frs, fsr and frr per cell, and free virus are cleared at rate c per virion, where εrt and εip are the efficacies of RT and PI, regarding the antiretroviral treatment (ε= 1 being a perfect drug). Model III was designed to combine the efficacy parameters and the resistance and suscetible virus, and to fit the intra-host dinamic in the inter-host populacional model, created in python. The inter-host model was designed to demonstrate the virus behavior in a 200 suscetible persons fictional sexual network, in 100 days of infection. First of all one randomic person was inoculated with a mixed infection, with the model III intra-host, and after that this person transmited the HIV infection to the rest of population in the network. It's known that the simulation of viral dynamics in social networks tries to identify the resistant possibilities of virus spreading over the population. Therefore our inter-host model suggest that in a mixed infection, with wild and resistant type of HIV, wild type virus can win the competition in intermediate and low adhesion cenarios, but with high adhesion in a populacion, resistant and wild type virus can coexist even in ARV presence. Hence, with this epidemiological model, we can rearange the strategies and politics of the HAART use for a better result in prolonging the HIV-1 infected ones. / Conhecido como vírus da imunodeficiencia humana, o HIV é o causador da AIDS, a sindrome de imunodeficiencia adquirida. O vírus, ao infectar o hospedeiro, ataca células T CD4 do sistema imune. Existem drogas da terapia anti-retroviral para o tratamento da AIDS, um regime complexo de drogas prontas para atacar o HIV em certos estágios do seu ciclo de vida. O HIV, em média, demora dez anos para passar de infecção primária para AIDS propriamente dita. Anteriormente, sabia-se que a taxa de replicação do HIV era muito baixa, mas juntamente com a terapia, percebeu-se que essa taxa poderia crescer rapidamente. A modelagem dessas taxas indicou que o vírus poderia se tornar resistente a qualquer droga, principalmente daquelas que precisavam de uma mutação para gerar resistência. Neste trabalho foram gerados três modelos intra - hospedeiro, que tentam retratar a dinâmica viral no interior de um indivíduo, abordando certas questões de interesse, tal como resistência, tratamento ARV e adesão ao tratamento, com EDOs, resolvidas através do Programa Model-Builder. O modelo I descreve a interação entre células T CD4 suscetíveis (T), células infectadas por vírus selvagem (Is), por células infectadas por vírus resistentes (Ir), vírus selvagens (Vs) e vírus resistentes (Vr). As células T CD4 são geradas a uma taxa λ, morrem a uma taxa d por célula, e são infectadas a uma taxa Ks e Kr. Células infectadas a constante δ e produzem vírus uma taxa fs e fr por célula. O modelo I foi testado através de dados da literatura de dois pacientes com dados experimentais coletados. Os gráficos gerados pelo programa Model-Builder foram similares aos da literatura.Inibidores de transcriptase reversa são usados para bloquear a habilidade do vírus de infectar a célula, enquanto que inibidores de protease provocam a liberação de partículas virais não infecciosas. Sendo assim, o modelo II descreve a interação entre as células T CD4 suscetíveis (T), quatro tipos de células infectadas, as duplamente sensíveis aos inibidores de RT e IP (Iss), as sensíveis a RT e resistentes a IP (Isr), as resistentes a RT e sensíveis a IP (Irs) e as duplamente resistentes (Irr), e os quatro tipos de vírus livres, que estão de acordo com a descrição anterior, Vss, Vsr, Vrs, Vrr. As células T CD4 são geradas a uma taxa λ e morrem a uma taxa d por célula e são infectadas a uma taxa k específica para cada tipo viral. Células infectadas morrem a uma taxa constante δ por célula e produzem novos vírus a taxas fss, frs, fsr e frr, respectivamente e novos vírus são liberados no sistema a uma taxa c por vírus, onde εrt e εip são as eficácias para IRT e IP, ao se abordar o tratamento ARV, no qual ε = 1 significa uma droga perfeita. Sabe-se que a simulação da dinâmica viral em redes sociais/sexuais tenta identificar quais as possibilidades de cepas virais resistentes serem transmitidas para a população. Assim, um modelo populaciona dinâmico, inter-hospedeiro foi desenvolvido para demonstrar como o vírus se espalha através das redes de contato da população através de uma redes sexual fictícia de 200 pessoas suscetíveis, com um tempo de 100 dias, no qual primariamente um indivíduo era inoculado com uma infecção mista, sendo rodado o modelo III no mesmo e depois, este indivíduo índice transmitia a infecção para o resto da rede. Os resultados desta dinâmica indicaram que em uma infecção mista, com tipos virais selvagens e resistentes, o tipo selvagem pode vencer a competição em cenários de baixa e intermidiária adesão, mas em cenários de alta adesão na população, o tipo resistente e o selvagem podem coexistir na presença de várias combinações de ARV. Logo, através deste modelo epidemiológico, novas propostas de políticas e estratégias para o uso da terapia ARV e revisão do uso da HAART podem ser propostas, com a finalidade de um melhor resultado, na presença de ambos os tipos de vírus, na sobrevida das pessoas que vivem com HIV/AIDS hoje, no mundo

Identiferoai:union.ndltd.org:IBICT/oai:tede-server.lncc.br:tede/90
Date06 June 2008
CreatorsCarvalho, Chandra Mara
ContributorsCodeço, Cláudia
PublisherLaboratório Nacional de Computação Científica, Programa de Pós-Graduação em Modelagem Computacional, LNCC, BR, Serviço de Análise e Apoio a Formação de Recursos Humanos
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações do LNCC, instname:Laboratório Nacional de Computação Científica, instacron:LNCC
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.009 seconds