De nos jours, les agents pathogènes des plantes, engendrent encore des pertes agricoles importantes. A terme, la solution la plus adaptée semble être la création de variétés de plantes cultivées présentant une résistance génétique à large spectre et durable. Créer de telles plantes nécessite la compréhension des mécanismes de résistance mis en jeu dans des pathosystèmes modèles, tels que celui impliquant le gène de résistance Rx et le virus X de la pomme de terre. Dans ce système, la protéine Rx intervient dans la perception d’un facteur d'avirulence issu du virus: sa protéine de capside (Cp). Cependant, les mécanismes moléculaires déclenchant la résistance chez la plante exprimant Rx demeurent obscurs. Cette étude s’est focalisée sur l’étape de reconnaissance de l’éliciteur viral par Rx. Une première approche a permis la mise en évidence d’un éliciteur minimal de 90 acides amine. L’étude d’un fragment légèrement plus grand par des méthodes de biochimie structurale, tend à exclure un modèle selon lequel, la différence de structuration tertiaire entre Cp élicitrice et Cp non élicitrice déterminerait la reconnaissance par Rx. Une seconde approche, de biologie moléculaire, a mis en évidence deux protéines hôte interagissant avec ce petit fragment éliciteur. L'étude s’est focalisée sur un gène codant un facteur de transcription, nbERF5, et a révélé que cette protéine interagit aussi bien avec les Cp de souches de Potexvirus avirulentes que virulentes dans la résistance liée à Rx, mais également avec la protéine de résistance Rx et l’intéracteur direct: RanGAP2. La poursuite de la caractérisation de cet ERF, permettra de déterminer son importance dans la résistance liée à Rx. / Nowadays, phytopathogenic agents are still causing significant agricultural losses. The most suitable option appears to be the creation of crop species carrying a genetic durable and broad spectrum resistance. In order to create such varieties, we need to understand the mechanisms underlying resistance, involved in model Pathosystems, Such as the one composed of the resistance gene Rx and the potato virus X. In that system, the host gene encodes a protein assimilated to a receptor implicated in the perception of an avirulence factor produced by the virus: its capside protein (Cp). Nevertheless, the molecular mechanisms triggering the resistance remain largely unknown. This study has been focused on the elicitor recognition mediated by Rx. A first approach led to the identification of a minimal elicitor containing 90 amino acids has. The structural characterization of a slightly larger protein fragment using biochemical methods suggested that the difference in the tertiary structuration of both elicitor and non-elicitor Cp would not be the determinant of Rx mediated recognition. Second, a molecular approach led to the discovery of two host proteins interacting with the small elicitor fragment. The work was focused on a transcription factor, nbERF5 and showed that this protein interacts similarly with elicitor or non-elicitor Cps of Rx mediated resistance. Interestingly, this gene product is able to directly interact with the Rx protein, but also with the direct interactor of Rx: RanGAP2, protein required for the Rx mediated resistance efficiency. Further characterization of this ethylen response factor will help us to understand its role in Rx mediated resistance.
Identifer | oai:union.ndltd.org:theses.fr/2012EVRY0036 |
Date | 12 October 2012 |
Creators | Leveau, Aymeric |
Contributors | Evry-Val d'Essonne, Sturbois, Bénédicte |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text, Image, StillImage |
Page generated in 0.0015 seconds