Return to search

Simulation of Mechanical Behaviour of Pure Titanium

Titanium is a widely applied material in industries and characterized by highly anisotropic mechanical behaviour. To study the special property of titanium, many kinds of mechanical loading tests have been conducted. Moreover, researchers attempted to reproduce these experiments with numerical methods. This paper will present an overview about the deformation mechanisms and related representative studies of titanium.

Among the numerical methods, Taylor type and self-consistent crystal plasticity models are two of the most common ones seen in literature. Simulation of some mechanical loading tests using visco-plastic self-consistent model was carried out and compared with the results given by Taylor type model. It has been found that self-consistent model prevails in the reproduction of stress-strain response and texture evolution.

During the calculation of self-consistent model, there are totally 4 kinds of self-consistent schemes available for linearization process. The author investigated 4 groups of simulation works using different self-consistent schemes. But no evident distinction has been observed.

The application of visco-plastic self-consistent model in commercial purity titanium is studied at the end. The simulation results successfully captured the general features of 9 mechanical loading tests. / Thesis / Master of Applied Science (MASc)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/18404
Date11 1900
CreatorsDeng, Shu
ContributorsWu, Peidong, Mechanical Engineering
Source SetsMcMaster University
LanguageEnglish
Detected LanguageEnglish
TypeImage, Thesis

Page generated in 0.0023 seconds