Return to search

Contributions on Automatic Recognition of Faces using Local Texture Features

Uno de los temas más destacados del área de visión artifical se deriva del análisis facial automático. En particular, la detección precisa de caras humanas y el análisis biométrico de las mismas son problemas que han generado especial interés debido a la gran cantidad de aplicaciones que actualmente hacen uso de estos mecnismos.
En esta Tesis Doctoral se analizan por separado los problemas relacionados con detección precisa de caras basada en la localización de los ojos y el reconomcimiento facial a partir de la extracción de características locales de textura. Los algoritmos desarrollados abordan el problema de la extracción de la identidad a partir de una imagen de cara ( en vista frontal o semi-frontal), para escenarios parcialmente controlados. El objetivo es desarrollar algoritmos robustos y que puedan incorpararse fácilmente a aplicaciones reales, tales como seguridad avanzada en banca o la definición de estrategias comerciales aplicadas al sector de retail.
Respecto a la extracción de texturas locales, se ha realizado un análisis exhaustivo de los descriptores más extendidos; se ha puesto especial énfasis en el estudio de los Histogramas de Grandientes Orientados (HOG features). En representaciones normalizadas de la cara, estos descriptores ofrecen información discriminativa de los elementos faciales (ojos, boca, etc.), siendo robustas a variaciones en la iluminación y pequeños desplazamientos.
Se han elegido diferentes algoritmos de clasificación para realizar la detección y el reconocimiento de caras, todos basados en una estrategia de sistemas supervisados. En particular, para la localización de ojos se ha utilizado clasificadores boosting y Máquinas de Soporte Vectorial (SVM) sobre descriptores HOG. En el caso de reconocimiento de caras, se ha desarrollado un nuevo algoritmo, HOG-EBGM (HOG sobre Elastic Bunch Graph Matching). Dada la imagen de una cara, el esquema seguido por este algoritmo se puede resumir en pocos pasos: en una primera etapa se ext / Monzó Ferrer, D. (2012). Contributions on Automatic Recognition of Faces using Local Texture Features [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/16698

Identiferoai:union.ndltd.org:upv.es/oai:riunet.upv.es:10251/16698
Date19 July 2012
CreatorsMonzó Ferrer, David
ContributorsAlbiol Colomer, Alberto, Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
PublisherUniversitat Politècnica de València
Source SetsUniversitat Politècnica de València
LanguageEnglish
Detected LanguageSpanish
Typeinfo:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/acceptedVersion
SourceRiunet
Rightshttp://rightsstatements.org/vocab/InC/1.0/, info:eu-repo/semantics/openAccess

Page generated in 0.0021 seconds