Today's smartphones are capable of accomplishing far more advanced tasks than reading emails. With the modern framework TensorFlow, visual object recognition becomes possible using smartphone resources. This thesis shows that the main challenge does not lie in developing an artifact which performs visual object recognition. Instead, the main challenge lies in developing an ecosystem which allows for continuous improvement of the system’s ability to accomplish the given task without laborious and inefficient data collection. This thesis presents four design principles which contribute to an efficient ecosystem with quick initiation of new object classes and efficient data collection which is used to continuously improve the system’s ability to recognize smart meters in varying environments in an automated fashion.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:ltu-80769 |
Date | January 2020 |
Creators | Lindqvist, Zebh |
Publisher | Luleå tekniska universitet, Institutionen för system- och rymdteknik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0142 seconds