Return to search

Metody strojového učení pro řešení geometrických konstrukčních úloh z obrázků / Learning to solve geometric construction problems from images

Geometric constructions using ruler and compass are being solved for thousands of years. Humans are capable of solving these problems without explicit knowledge of the analytical models of geometric primitives present in the scene. On the other hand, most methods for solving these problems on a computer require an analytical model. In this thesis, we introduce a method for solving geometrical constructions with access only to the image of the given geometric construction. The method utilizes Mask R-CNN, a convolutional neural network for detection and segmentation of objects in images and videos. Outputs of the Mask R-CNN are masks and bounding boxes with class labels of detected objects in the input image. In this work, we employ and adapt the Mask R- CNN architecture to solve geometric construction problems from image input. We create a process for computing geometric construction steps from masks obtained from Mask R- CNN and describe how to train the Mask R-CNN model to solve geometric construction problems. However, solving geometric problems this way is challenging, as we have to deal with object detection and construction ambiguity. There is possibly an infinite number of ways to solve a geometric construction problem. Furthermore, the method should be able to solve problems not seen during the...

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:438052
Date January 2021
CreatorsMacke, Jaroslav
ContributorsŠivic, Josef, Šikudová, Elena
Source SetsCzech ETDs
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/masterThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0021 seconds