Video surveillance has long been in use to monitor security sensitive areas such as banks, department stores, crowded public places and borders. The rise in computer speed, availability of cheap large-capacity storage devices and high speed network infrastructure enabled the way for cheaper, multi sensor video surveillance systems. In this thesis, the problem of tracking multiple targets with multiple cameras has been discussed. Cameras have been located so that they have overlapping fields of vision. A dynamic background-modeling algorithm is described for segmenting moving objects from the background, which is capable of adapting to dynamic scene changes and periodic motion, such as illumination change and swaying of trees. After segmentation of foreground scene, the objects to be tracked have been acquired by morphological operations and connected component analysis. For the purpose of tracking the moving objects, an active contour model (snakes) is one of the approaches, in addition to a Kalman tracker. As the main tracking algorithm, a rule based tracker has been developed first for a single camera, and then extended to multiple cameras. Results of used and proposed methods are given in detail.
Identifer | oai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/2/12609477/index.pdf |
Date | 01 May 2008 |
Creators | Yilmaz, Mehmet |
Contributors | Leblebicioglu, Kemal |
Publisher | METU |
Source Sets | Middle East Technical Univ. |
Language | English |
Detected Language | English |
Type | M.S. Thesis |
Format | text/pdf |
Rights | To liberate the content for METU campus |
Page generated in 0.0018 seconds