abstract: Silicic volcanoes produce many styles of activity over a range of timescales. Eruptions vary from slow effusion of viscous lava over many years to violent explosions lasting several hours. Hazards from these eruptions can be far-reaching and persistent, and are compounded by the dense populations often surrounding active volcanoes. I apply and develop satellite and ground-based remote sensing techniques to document eruptions at Merapi and Sinabung Volcanoes in Indonesia. I use numerical models of volcanic activity in combination with my observational data to describe the processes driving different eruption styles, including lava dome growth and collapse, lava flow emplacement, and transitions between effusive and explosive activity.
Both effusive and explosive eruptions have occurred recently at Merapi volcano. I use satellite thermal images to identify variations during the 2006 effusive eruption and a numerical model of magma ascent to explain the mechanisms that controlled those variations. I show that a nearby tectonic earthquake may have triggered the peak phase of the eruption by increasing the overpressure and bubble content of the magma and that the frequency of pyroclastic flows is correlated with eruption rate. In 2010, Merapi erupted explosively but also shifted between rapid dome-building and explosive phases. I explain these variations by the heterogeneous addition of CO2 to the melt from bedrock under conditions favorable to transitions between effusive and explosive styles.
At Sinabung, I use photogrammetry and satellite images to describe the emplacement of a viscous lava flow. I calculate the flow volume (0.1 km3) and average effusion rate (4.4 m3 s-1) and identify active regions of collapse and advance. Advance rate was controlled by the effusion rate and the flow’s yield strength. Pyroclastic flow activity was initially correlated to the decreasing flow advance rate, but was later affected by the underlying topography as the flow inflated and collapsed near the vent, leading to renewed pyroclastic flow activity.
This work describes previously poorly understood mechanisms of silicic lava emplacement, including multiple causes of pyroclastic flows, and improves the understanding, monitoring capability, and hazard assessment of silicic volcanic eruptions. / Dissertation/Thesis / Doctoral Dissertation Geological Sciences 2016
Identifer | oai:union.ndltd.org:asu.edu/item:40333 |
Date | January 2016 |
Contributors | Carr, Brett Brady (Author), Clarke, Amanda B (Advisor), Arrowsmith, Ramón (Committee member), McNamara, Allen (Committee member), Shirzaei, Manoochehr (Committee member), Williams, Stanley (Committee member), Arizona State University (Publisher) |
Source Sets | Arizona State University |
Language | English |
Detected Language | English |
Type | Doctoral Dissertation |
Format | 205 pages |
Rights | http://rightsstatements.org/vocab/InC/1.0/, All Rights Reserved |
Page generated in 0.002 seconds