Return to search

Adsorptive stripping voltammetry of trace elements on a glassy carbon mercury film electrode

This thesis describes the development of new adsorptive cathodic stripping voltammetric methods for reliable determination of some trace metals in biological and environmental materials on a glassy carbon mercury film electrode. In particular, the development of these methods involved selection of a suitable complexing agent for the respective metal ion studied, characterization of the electrode processes, investigation of factors affecting the voltammetric response such as concentration and pH of supporting electrolyte, concentration of complexing agent, accumulation potential, accumulation time and electrode rotation rate. Also, organic and inorganic interferences, linear concentration range, and detection limits were carefully considered. Furthermore, the analytical application of the method was demonstrated for each metal in biological and/or environmental materials, after optimization of the sample decomposition procedure. Some conclusions : the results obtained by the AdCSV method for the determination of tin in juices agreed reasonably with those obtained by atomic absorption method; the use of the adsorptive voltammetric technique after dry-ashing and UV treatment of the samples was successfully demonstrated for the determination of vanadium in standard reference materials such as urban particulate matter, peach leaves, apple leaves and bovine liver; and, the use of the adsorptive stripping voltammetric technique, after decomposition of samples by dry-ashing and UV treatment, was successfully demonstrated for the determination of molybdenum in peach leaves, apple leaves and bovine liver samples. / Doctor of Philosophy (PhD)

Identiferoai:union.ndltd.org:ADTP/235881
Date January 1994
CreatorsPablo, Fleurdelis, University of Western Sydney, Nepean, Faculty of Science and Technology
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
SourceTHESIS_FST_XXX_Pablo_F.xml

Page generated in 0.1918 seconds