A great challenge in the volume-rendering field is to achieve high-quality images in an acceptable amount of time. In the area of volume rendering, there is always a trade-off between speed and quality. Applications where only high-quality images are acceptable often use the ray-casting algorithm, but this method is computationally expensive and typically achieves low frame rates. The work presented here is RZSweep, a new volume-rendering algorithm for uniform rectilinear datasets, that gives high-quality images in a reasonable amount of time. In this algorithm a plane sweeps the vertices of the implicit grid of regular datasets in depth order, projecting all the implicit faces incident on each vertex. This algorithm uses the inherent properties of a rectilinear datasets. RZSweep is an object-order, back-toront, direct volume rendering, face projection algorithm for rectilinear datasets using the cell approach. It is a single processor serial algorithm. The simplicity of the algorithm allows the use of the graphics pipeline for hardware-assisted projection, and also, with minimum modification, a version of the algorithm that is graphics-hardware independent. Lighting, color and various opacity transfer functions are implemented for giving realism to the final resulting images. Finally, an image comparison is done between RZSweep and a 3D texture-based method for volume rendering using standard image metrics like Euclidian and geometric differences.
Identifer | oai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-4844 |
Date | 10 May 2003 |
Creators | Chaudhary, Gautam |
Publisher | Scholars Junction |
Source Sets | Mississippi State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Page generated in 0.0017 seconds