Return to search

Structural results for von Neumann algebras of poly-hyperbolic groups

This work is a compilation of structural results for the von Neumann algebras of poly-hyperbolic groups established in a series of works done jointly with I. Chifan and T. Sinclair; and S. Pant. These works provide a wide range of circumstances where the product structure, a discrete structural property, can be recovered from the von Neumann algebra (a continuous object).
The primary result of Chifan, Sinclair and myself is as follows: if Γ = Γ1 × · · · × Γn is a product of non-elementary hyperbolic icc groups and Λ is a group such that L(Γ)=L(Λ), then Λ decomposes as an n-fold product of infinite groups. This provides a group-level strengthening of the unique prime decomposition of Ozawa and Popa by eliminating any assumption on the target group Λ. The methods necessary to establish this result provide a malleable procedure which allows one to rebuild the product of a group from the algebra itself.
Modifying the techniques found in the previous work, Pant and I are able to demonstrate that the class of poly-groups exhibit a similar phenomenon. Specifically, if Γ is a poly-hyperbolic group whose corresponding algebra is non-prime, then the group must necessarily decompose as a product of infinite groups.

Identiferoai:union.ndltd.org:uiowa.edu/oai:ir.uiowa.edu:etd-7212
Date01 August 2017
Creatorsde Santiago, Rolando
ContributorsChifan, Ionut
PublisherUniversity of Iowa
Source SetsUniversity of Iowa
LanguageEnglish
Detected LanguageEnglish
Typedissertation
Formatapplication/pdf
SourceTheses and Dissertations
RightsCopyright © 2017 Rolando de Santiago

Page generated in 0.002 seconds