Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia de Automação e Sistemas, Florianópolis, 2016. / Made available in DSpace on 2017-02-21T04:37:26Z (GMT). No. of bitstreams: 1
344130.pdf: 4016793 bytes, checksum: cf47b999d21f2e9b5ccc1999f40c9231 (MD5)
Previous issue date: 2016 / Abstract : Airborne Wind Energy (AWE) is an emerging field of technology that investigates wind power devices capable of remaining airborne either through aerostatic or aerodynamic forces. Consequently, the heavy and expensive tower of conventional horizontal-axis wind turbines is no longer needed, allowing the AWE device to operate at higher altitudes, where the wind tends to be steadier and stronger and, therefore, more power is available. Another claimed advantage is the reduction on overall costs, especially regarding transportation and installation, due to the absence of the tower to withstand the torque caused by the rotating turbine, thus also requiring a simpler foundation. Several AWE concepts have been proposed, among which the pumping kite stands out as one of the simplest and cheapest, essentially comprising a ground winch where energy is generated, and a tethered wing that can be either flexible or rigid. This dissertation contributes to the field of AWE by addressing the pumping kite in four different aspects. The goal is to serve both as a manuscript for the lay reader with some background on physics, aerodynamics, dynamic systems, classic control and optimization techniques, as well as by specialists in either of these areas who intend to carry out deeper investigations. The first contribution is to revisit in detail important models in the literature used to simulate the flight dynamics, to design and to validate control laws. Namely, the 3D two-tether point-mass wing (to which modifications are proposed), the massless wing in dynamic equilibrium, the course angle dynamics and the logarithmic wind shear model are addressed. The second contribution is a comparative study of flight controllers whose references are computed separately from the ground winch control, in a decentralized topology. A two-loop approach is considered, where the outer loop defines a reference trajectory and generates a reference for the course angle, which is then tracked in the inner loop by manipulating the steering input of the tethered wing. A third contribution is the formulation of an optimization problem to choose the operating parameters of the traction and retraction phases that yield the maximum cycle power. One of the main findings is that, by reeling out at a lower speed than the value that maximizes the traction power, the duty cycle increases and, thereby, also the cycle power. The last major contribution is to reinterpret Loyd?s lift (the pumping kite traction phase) and drag modes as particular cases of the actuator disc considered in the derivation of the Betz limit for power extraction from the wind. The expression for the lift mode power coefficient is formulated using blade element momentum theory.<br> / Energia eólica aérea (Airborne Wind Energy (AWE), em inglês) é uma tecnologia de energia renovável que trata de dispositivos que aproveitam a energia cinética do vento e são capazes de se manter no ar através de forças aerostáticas ou forças aerodinâmicas. Este campo de estudos vem atraindo cada vez mais pesquisas devido a duas grandes vantagens previstas sobre a tecnologia convencional de turbinas de eixo horizontal. A primeira vantagem é que a substituição da torre por cabos de comprimento variável permite ao dispositivo operar em altitudes mais elevadas, onde os ventos tendem a soprar mais consistentemente e a uma velocidade maior, caracterizando, portanto, um potencial energético maior. A segunda vantagem é uma redução substancial nos custos do empreendimento, especialmente nos quesitos de transporte e instalação, devido à ausência de uma torre que deva suportar o torque causado pela operação da turbina. Assim, acredita-se que a fundação para o ponto de ancoragem do sistema também se torna mais simples e barata. Os dispositivos de AWE que mantêm-se em voo através de forças aerodinâmicas são denominados de aerofólios cabeados . Várias estruturas com aerofólios cabeados já foram propostas, dentre as quais destaca-se o pumping kite por ser uma das mais simples e de menor custo. O pumping kite consiste, essencialmente, de duas unidades uma de solo e a outra, de voo com possíveis variações quanto ao tipo de aerofólio (rígido ou flexível), número e função dos cabos, atuadores para controle de voo no solo ou junto ao aerofólio, etc. Em uma das configurações mais usuais, tem-se uma máquina elétrica no solo acoplada a um carretel através de uma redução mecânica. À medida em que o aerofólio descreve uma trajetória que visa maximizar a força de tração no cabo, este desenrola-se do carretel, fornecendo potência mecânica à máquina elétrica que, nessa fase, opera como gerador. Quando o comprimento de cabo atinge um valor pré-determinado, encerra-se a fase de tração e inicia-se a fase de recolhimento, durante a qual a máquina elétrica opera como motor para enrolar o cabo até seu comprimento inicial. Para isto o aerofólio é reconfigurado para uma condição de baixa força aerodinâmica, permitindo o recolhimento com um pequeno gasto energético e, assim, aumentando a potência média entregue à rede (potência de ciclo) ao final deste ciclo com duas fases. A unidade de voo é composta essencialmente pelo aerofólio, por um microcomputador embarcado e pelos atuadores de controle de voo. Esta tese visa contribuir à área de AWE em quatro diferentes aspectos. O objetivo é servir tanto como um documento para o leitor leigo interessado no assunto e que tenha conhecimentos em física, aerodinâmica, sistemas dinâmicos, controle clássico e otimização, bem como uma referência para especialistas que estejam buscando avançar em qualquer uma destas frentes. A primeira contribuição é a discussão em detalhes de alguns modelos importantes usados para a simulação, análise e projeto de controladores de voo para aerofólios cabeados. Dentre estes modelos está o aerofólio ponto de massa com dois cabos, cuja construção é explicada passo-a-passo, incluindo a proposição de pequenas modificações relativas ao efeito da massa dos cabos nas equações de movimento. Em seguida também é feita a derivação do modelo que representa a dinâmica do ângulo de curso ( ângulo de giro ) do aerofólio, que é uma variável frequentemente utilizada para o controle de voo. Um terceiro modelo discutido é o modelo logarítmico que descreve a variação da intensidade média do vento de acordo com o coeficiente de rugosidade do solo. Para fins ilustrativos, o modelo foi interpolado para algumas localidades com base em um banco de dados norte-americano aberto ao público. A segunda contribuição desta tese é um estudo comparativo sobre abordagens para controle de voo em uma topologia decentralizada, na qual as leis de controle da unidade de solo e de voo são computadas separadamente. O controle de voo utiliza uma estratégia com duas malhas em cascata. Durante a fase de tração, uma opção é a malha externa utilizar a lemniscata de Bernoulli como referência para a trajetória de oito deitado desejada para o voo do aerofólio. Com base no erro de seguimento da lemniscata, é gerada uma referência para o ângulo de curso, que é repassada à malha interna. Já para a fase de retração, a referência do ângulo de curso é mantida apontando para o zênite, fazendo com que o aerofólio saia da zona de potência (condição de vento cruzado, crosswind) e possa ser recolhido com baixo gasto energético. Uma outra possibilidade discutida, mais simples, é o uso de apenas dois pontos de atração (atratores) como referência de posição do aerofólio na malha externa, com apenas um dos atratores ativo. Assim que o aerofólio cruza a coordenada azimute de um atrator, o outro torna-se o ativo, levando o aerofólio a executar uma curva e, dessa forma, realizar a trajetória desejada de oito deitado. Devido à descontinuidade no erro de seguimento quando chaveia-se entre os atratores, ocorre uma descontinuidade no sinal de controle, razão pela qual esta estratégia é conhecida como bang-bang . É discutido como o bang-bang pode ser vantajoso no caso de aerofólios cabeados com um curto perímetro (comprimento de arco) da trajetória, situação em que o período de amostragem do controle torna-se relativamente grande, o que dificulta a estabilização do controle. Por outro lado, no caso de trajetórias com perímetro maior, a ausência de um percurso bem definido entre os dois atratores pode resultar em uma trajetória aproximadamente geodésica ( reta angular), afastando-se, assim, das trajetórias ótimas de oito deitado sugeridas na literatura. Neste caso, a opção com a lemniscata de Bernoulli pode tornar-se vantajosa. Para a malha interna do controle de voo também foram investigadas algumas alternativas, entre as quais um controlador proporcional. Usando o modelo da dinâmica do ângulo de curso linearizado em alguns pontos principais, é computado o intervalo do ganho proporcional que garante estabilidade em malha fechada, supondo conhecidos os parâmetros do modelo. Também com base no mesmo modelo do ângulo de curso, projetou-se um controlador de realimentação linearizante que impõe uma dinâmica estável de primeira ordem ao erro de rastreamento da malha interna. Tal controlador linearizante requer, em sua lei de controle, o conhecimento da derivada da referência do ângulo de curso. Dado que esta derivada pode ser difícil de se obter, na prática, com baixo ruído, é investigada
uma variante do controlador linearizante sem a mencionada derivada. Considerando, para os três controladores, aproximadamente a mesma constante de tempo do sistema em malha fechada, o controlador linearizante completo obteve o melhor desempenho, seguido pelo proporcional, enquanto o linearizante sem derivada da referência do ângulo de curso ficou com o pior desempenho. Uma terceira contribuição ao estudo do pumping kite é a formulação de um problema de otimização para um ciclo de operação, considerando-se a topologia de controle decentralizado. Já que a lei de controle de voo é computada separadamente da unidade de solo, é necessário determinar os valores de alguns parâmetros de operação cuja escolha pode ter um impacto significativo na potência de ciclo. Mostra-se como a potência média durante a fase de tração varia em função do ângulo de ataque médio, e como o ângulo de ataque base pode ser determinado para operar-se no ponto de máxima potência. A fase de tração é parametrizada em termos de um ângulo de ataque base, uma velocidade de desenrolamento, um ângulo polar médio da trajetória, e um comprimento médio do cabo. Já a fase de retração é parametrizada por meio de dois coeficientes que definem a inclinação das rampas de força de tração e ângulo de ataque base, e dois patamares ao final destas rampas. São consideradas restrições no mínimo ângulo de ataque importante no caso de aerofólios flexíveis e na máxima velocidade de enrolamento alcançada pela máquina elétrica. A ideia é reduzir a força de tração e o ângulo de ataque do aerofólio enquanto a velocidade de enrolamento aumenta e, dessa forma, obter-se uma fase de retração eficiente. Para fins ilustrativos, o problema de otimização é resolvido para os valores de patamar através de uma busca em grid, enquanto os coeficientes de inclinação de rampa são definidos de maneira ad hoc. Entre as principais conclusões está que, para o aerofólio do tipo foil (ram-air) kite com 12 m2 de área projetada sujeito a um vento nominal de aproximadamente 10 m/s, ao desenrolar-se o cabo a 2.3 m/s, o que corresponde a uma redução de 25.8 % com relação à velocidade que maximiza a potência na fase de tração, obtém-se um acréscimo de 9.3 % na potência de ciclo. Com base em um método simplificado para cálculo da potência de ciclo, também é obtida a curva de potência do pumping kite, discutindo-se as suas distintas regiões de operação. A última contribuição desta tese refere-se à interpretação dos aerofólios cabeados como um caso específico do disco atuador considerado na derivação do limite de Betz para extração de potência do vento. No caso do disco atuador, a potência extraída é abstraída como o produto entre o empuxo sofrido pelo disco e a velocidade do vento atravessando o disco. No caso da turbina eólica de eixo horizontal, a potência dá-se pelo produto entre o torque no disco e a sua velocidade angular. Já no caso do modo de sustentação de Loyd (a fase de tração do pumping kite), a potência decorre do produto entre o empuxo no disco e a velocidade de translação do disco no sentido do vento (velocidade de desenrolamento ). Finalmente, no caso do modo de arrasto de Loyd (turbina acoplada ao aerofólio cabeado), a potência aproveitada surge do produto entre a velocidade tangencial do disco e a força de arrasto (empuxo) sofrida pela turbina. A tese é concluída com a formulação da expressão do coeficiente de potência para o modo de sustentação de Loyd, evidenciando-se o problema do cálculo dos fatores de indução axial, radial, e o ângulo de ataque parcial para cada anel do disco.
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.ufsc.br:123456789/173661 |
Date | January 2016 |
Creators | Oliveira, Marcelo De Lellis Costa de |
Contributors | Universidade Federal de Santa Catarina, Trofino Neto, Alexandre |
Source Sets | IBICT Brazilian ETDs |
Language | English |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Format | 190 p.| il., grafs., tabs. |
Source | reponame:Repositório Institucional da UFSC, instname:Universidade Federal de Santa Catarina, instacron:UFSC |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0042 seconds