Return to search

pEDM: Online-Forecasting for Smart Energy Analytics

Continuous balancing of energy demand and supply is a fundamental prerequisite for the stability of energy grids and requires accurate forecasts of electricity consumption and production at any point in time. Today's Energy Data Management (EDM) systems already provide accurate predictions, but typically employ a very time-consuming and inflexible forecasting process. However, emerging trends such as intra-day trading and an increasing share of renewable energy sources need a higher forecasting efficiency. Additionally, the wide variety of applications in the energy domain pose different requirements with respect to runtime and accuracy and thus, require flexible control of the forecasting process. To solve this issue, we introduce our novel online forecasting process as part of our EDM system called pEDM. The online forecasting process rapidly provides forecasting results and iteratively refines them over time. Thus, we avoid long calculation times and allow applications to adapt the process to their needs. Our evaluation shows that our online forecasting process offers a very efficient and flexible way of providing forecasts to the requesting applications.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:80643
Date16 September 2022
CreatorsDannecker, Lars, Rösch, Philipp, Fischer, Ulrike, Gaumnitz, Gordon, Lehner, Wolfgang, Hackenbroich, Gregor
PublisherACM
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/acceptedVersion, doc-type:conferenceObject, info:eu-repo/semantics/conferenceObject, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relation978-1-4503-2263-8, 10.1145/2505515.2505588, info:eu-repo/grantAgreement/European Commission/FP7 | SP1 | ICT/248195//Micro-Request-Based Aggregation, Forecasting and Scheduling of Energy Demand, Supply and Distribution/MIRABEL

Page generated in 0.0029 seconds