Return to search

Etude expérimentale et numérique de séparateurs gaz-liquide cyclindriques de type cyclone / Experimental and numerical investigation of cyclone gas-liquid separators

Ce travail se penche sur l'étude expérimentale et la simulation numérique du GLCC, un séparateur gaz-liquide cyclonique destiné à de l'industrie pétrolière.Les expériences sont menées sur un pilote air-eau. Dans un premier temps, des observations visuelles ont permis de caractériser le fonctionnement du système en fonction des débits d'entrée. L'influence de la géométrie du système ainsi que des propriétés des fluides sont également considérées.Dans un second temps, l'hydrodynamique de l'écoulement tourbillonnaire dans le séparateur est étudiée par vélocimétrie laser Doppler.Cette étude expérimentale, en mettant l'accent sur le rôle important du fillament tourbillonnaire, a permis d'expliquer pour la première fois divers aspects des écoulements tourbillonnaires turbulents. L'analyse des résultats met également en évidence les nombreuses limites du modèle théorique utilisé pour dimensionner les GLCCs.Côté numérique, les écoulements tourbillonnaires en conduite sont étudiés par une approche CFD utilisant le code commercial Fluent 6.3. Les résultats montrent que la CFD peut reproduire correctement les écoulements tourbillonnaires monophasiques. Cependant, en diphasique, les techniques de simulation actuelles ne conviennent pas pour simuler ce type d'écoulement. / This work focuses on the experimental study and numerical simulation of the GLCC, a gas-liquid cyclone separator developed for the oil industry.The experiments are conducted on an air-water pilot. In a first step, visual observations were used to characterize the system operation according to the incoming flow rates. The influence of system's geometry and the fluid's properties are also considered.In a second step, the hydrodynamics of the vortex flow in the separator is studied by laser Doppler velocimetry.This experimental study, focusing on the important role of the vortex filament, allowed to explain for the first time various aspects of turbulent swirling flows. The analysis of the results also highlights the many limitations of the theoretical model used to design the GLCC.On the numerical side, the swirling flows in pipes are studied via the CFD commercial code Fluent 6.3. The results show that CFD can correctly reproduce the single-phase vortex flow.However, for multiphase flow simulations, it is shown that the current simulation techniques are not suitable to simulate this type of flow.

Identiferoai:union.ndltd.org:theses.fr/2011INPL100N
Date07 December 2011
CreatorsHreiz, Rainier
ContributorsVandoeuvre-les-Nancy, INPL, Gentric, Caroline, Midoux, Noël
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0035 seconds