Cette thèse porte sur divers aspects de lois et de processus non-gaussiens qui partagent des propriétés de changement d'échelle où intervient l'exposant 2/3. Les deux principaux objets probabilistes que nous allons présenter sont : 1) La loi de Tracy-Widom : C'est la loi limite de la plus grande valeur propre de matrices aléatoires appartenant aux beta-ensembles lorsque leur dimension tend vers l'infini. Dans un travail en commun avec Balint Virag, nous avons établi le comportement asymptotique de la queue droite de cette loi pour tout beta strictement positif, en utilisant des outils d'analyse de diffusions du type Girsanov. 2) Le ''vrai'' processus auto-répulsif (''true self repelling motion'') TSRM : C'est un processus auto-interagissant qui a été introduit par Balint Toth et Wendelin Werner. Nous nous sommes intéressés à des propriétés de cet objet liées à ses trajectoires (grandes déviations, lois du logarithme itéré) et à des calculs explicites de lois marginales (travail en collaboration avec Balint Toth). Cette étude nous a aussi amenés à aborder des questions liées à la théorie des jeux.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00772274 |
Date | 07 December 2012 |
Creators | Dumaz, Laure |
Publisher | Université Paris Sud - Paris XI |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.002 seconds