Return to search

Comparison of Bacterial and Viral Reduction Across Different Wastewater Treatment Processes

Today billions of people live without access to basic sanitation facilities, and thousands die every week due to diseases caused by fecal contamination associated with improper sanitation. It has thus become crucial for decision makers to have access to relevant and sufficient data to implement appropriate solutions to these problems. The Global Water Pathogen Project http://www.waterpathogens.org/ is dedicated to providing an up-to-date source of data on pathogen reduction associated with different sanitation technologies that are important if the world is to achieve the Sustainable Development Goals (SDGs) related to health and sanitation provision. In this research, a subset of the Global Water Pathogen Project (GWPP) data is used to access the reduction of bacteria and viruses across different mechanical and natural sanitation technologies. The order of expected removal for bacteria during wastewater treatment was reported as highest for a membrane bioreactor (4.4 log10), waste stabilization pond (2.3 log10), conventional activated sludge (1.43 log10), anaerobic anoxic oxic activated sludge (1.9 log10), trickling filter (1.16 log10), and upflow anaerobic sludge blanket reactor (1.2 log10).
Furthermore, the order of expected removal for viruses was reported as highest for a membrane bioreactor (3.3 log10), conventional activated sludge (1.84 log10), anaerobic anoxic oxic activated sludge (1.67 log10), waste stabilization pond (1 log10), upflow anaerobic sludge blanket reactor (0.3 log10) and trickling filter (0.29 log10). It was found that hydraulic retention time (HRT) had a statistically significant relation to the reduction of bacteria in an anaerobic, anoxic oxic treatment system. Similarly, a significant relation was found between the number of waste stabilization ponds in series and the expected reduction of bacteria. HRT was also found to be a significant factor in virus reduction in waste stabilization ponds. Additionally, it was observed that waste stabilization ponds, trickling filters, and UASB reactors could obtain a greater reduction in bacteria (5-7 log10) when combined with additional treatment (e.g., chemical disinfection or use of maturation ponds). Also, mechanized systems, such as activated sludge systems and membrane bioreactors, obtained a greater reduction (2-3 log10) of viruses when compared to a natural system. It was concluded that the selection of the best suitable technology for pathogen reduction depends on environmental, design, and operational factors as well as considering the performance of specific wastewater treatment systems individually as well as when combined with other treatment technologies that may provide added removal of microbial constituents.

Identiferoai:union.ndltd.org:USF/oai:scholarcommons.usf.edu:etd-8783
Date01 November 2018
CreatorsVagadia, Aayushi R.
PublisherScholar Commons
Source SetsUniversity of South Flordia
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceGraduate Theses and Dissertations

Page generated in 0.0019 seconds