Return to search

Microwave-assisted synthesis of β-CD polymers incorporating N-doped carbon nanotubes and silver nanoparticles for water purification

A dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of a Master of Science degree in Chemistry. University of the Witwatersrand, May 2013 / The pollution of water sources by chemical and biological species has created a serious water crisis all over the world. Such pollution has placed severe strains on the limited water sources resulting in the spread of waterborne diseases, which continue to be the leading causes of deaths in developing countries. Pollution by organic species still poses a serious health and environmental problem. Attempts to mitigate this problem are on-going and a number of methods are employed currently. Activated carbon and reverse osmosis are some of the current techniques that are used for the removal of organics in water. However, these techniques are limited in the removal of pollutants at lower concentrations (ng/L). Recent studies demonstrated the efficient removal of organics by nanoporous cyclodextrin (CD) polymers, a class of nanomaterials with great potential in absorbing organic pollutants from water.
This project reports on the synthesis of β-cyclodextrin (β-CD) based polymer nanocomposite materials (nanocomposites) that have been blended with nitrogen-doped carbon nanotubes (N-CNTs) and silver (Ag) nanoparticles for water treatment. Prior to this study, the synthesis of these nanocomposites has been based on a conventional method that involves heating the reactants in a round bottom flask for 16 – 24 h. In this study a new method that is efficient, greener and time saving is reported. This facile method involved synthesizing the polymer nanocomposites under microwave irradiation wherein complete synthesis of the polymer nanocomposites was achieved in 10 min.
N-CNTs were first synthesized via modified chemical vapour deposition method (CVD) using a 10wt% Fe-Co/CaCO3 catalyst. The N-CNTs were found to contain ~ 2% nitrogen by CN and XPS analysis. The N-CNTs were of high purity and were oxidized with acid functional groups (-COOH, -C=O, -OH) using nitric acid under reflux. Zeta potential studies indicated that the quantity of acid functional groups increased with increase in acid treatment time. The functionalised N-CNTs (fN-CNTs) were then decorated with Ag nanoparticles using microwave irradiation and further polymerized with β-CD using hexamethylene diisocyanate (HMDI) as the linker in an industrial microwave under an inert gas atmosphere of N2.
Two types of polymer nanocomposites were synthesized namely, N-CNTs/β-CD and Ag/N-CNTs/β-CD. Different synthesis parameters such as microwave power and time were varied during the synthesis of these composites to study their effect on the result materials. Different level of power, 400 W, 600 W and 800 W were tested and surface area and morphology data indicated that all these powers can be used in synthesising the polymer composites. The optimum power used was 600 W, which gave highly porous, less densely packed morphology and a higher surface area of the polymers. The synthesis time was varied for 10 min, 15 min and 30 min. An irradiation time of 10 min was found to be sufficient for the synthesis of the nanocomposites. The polymers showed an efficient removal of p-nitrophenol, bisphenol A and trichloroethylene (TCE) from spiked water as confirmed by UV-Vis spectroscopy and GC/MS analysis.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:wits/oai:wiredspace.wits.ac.za:10539/12919
Date29 July 2013
CreatorsMasinga, Sello Petros
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf

Page generated in 0.0021 seconds