Return to search

Polyethersulfone (PES) membrane embedded with Fe/Ni nanoparticles decorated-carbon nanotubes (CNTs) for degradation of chlorinated organics in water

MSc. (Applied Chemistry) / Remediation of POPs particularly the chlorinated compounds in water is therefore crucial. This research work describes the modification of polyethersulfone (PES) thin-film membrane composite (TFC) with functionalised carbon nanotubes (f-CNTs) using the phase invasion method. The oxidised CNTs were successfully decorated with Zero-Valent (ZV) Fe/Ni nanoparticles for the adsorption and degradation studies of polychlorinated organic pollutants (in this case the dichlorodiphenyltrichloroethanes (DDTs)). The in situ modification procedure was carried out using different quantities (0.04 wt%, 0.1 wt% and 0.2 wt%) of Fe/Ni-f-CNTs nanohybrids dispersed in a DMAc solution and dipping the polyethersulfone powder into a suspension containing the Fe/Ni-f-CNTs to form a nano-composite membrane. The formed composite membrane characteristics were investigated with Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), atomic force microscopy (AFM), contact angle (CA) and X-ray diffraction spectroscopy (XRD). The incorporation of nanohybrid in the PES membrane was found to increase the surface smoothness and the hydrophilicity of the composites. In addition, there was an increase in the adsorption of DDTs with increase in the nano-hybrid loading as indicated by the adsorption studies using the Langmuir isotherm and Freundlich isotherm studies. The data obtained from the batch studies closely fitted with the Langmuir isotherm based on the characteristic parameter RL found to lie within the standard range 0 < RL < 1 .

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:uj/uj:13655
Date30 June 2015
CreatorsThatyana, Maxwell
Source SetsSouth African National ETD Portal
Detected LanguageEnglish
TypeThesis
RightsUniversity of Johannesburg

Page generated in 0.0018 seconds