Pigment-based chemotaxonomy uses relative amounts of photosynthetic pigments (biomarkers) within algae samples to determine the algal class composition of each sample. Chemotaxonomy has been applied successfully to phytoplankton communities, but its efficacy for periphyton has not yet been established. This study examined the ability of simultaneous linear equations (SLE), CHEMTAX, and the Bayesian Compositional Estimator (BCE) to determine algal class composition in Florida Everglades periphyton. The methods were applied to artificial datasets, mixed lab cultures of known composition, and Everglades periphyton samples for which microscopic biovolume data was available. All methods were able to return accurate sample compositions for artificial data and mixed lab cultures. Correlation between pigment methods and microscopic results for natural periphyton samples was poor. SLE and CHEMTAX returned similar results for all samples while BCE performed less well. / by Jamie L. Browne. / Thesis (M.S.)--Florida Atlantic University, 2010. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2010. Mode of access: World Wide Web.
Identifer | oai:union.ndltd.org:fau.edu/oai:fau.digital.flvc.org:fau_3401 |
Contributors | Browne, Jamie L., Charles E. Schmidt College of Science, Department of Chemistry and Biochemistry |
Publisher | Florida Atlantic University |
Source Sets | Florida Atlantic University |
Language | English |
Detected Language | English |
Type | Text, Electronic Thesis or Dissertation |
Format | ix, 103 p. : ill. (some col.), electronic |
Coverage | Florida, Everglades, Florida, Everglades, Florida, Everglades, Florida, Everglades |
Rights | http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.002 seconds