Essential to human life is water. Drinking water, in particular, is of utmost significance for all living creatures including man. An examination of the transmission process of drinking water reveals the high importance of pipe lines. The water pipe lines delivering water today encounter serious problems. Corrosion has caused deterioration in pipe lines, which contributes rust to drinking, a serious water quality problem. In addition, pipe line failures have caused social issues, such as suspension of water supply. This study developed a model to estimate the life expectancy and residual life of a pipe based on the assessment of failure risk in order to evaluate the current failure possibility and predict when the pipe will reach the point of failure. The developed model for estimation of residual life by failure risk was used to assess the failure risk of water pipes based on the general data and pipe sources of the Chang Won City water pipes. The efforts to diagnose and evaluate water pipes are limited to the assessment of current pipe conditions, which is why they can easily determine the priority of rehabilitation based on the current pipe conditions but have hard time getting information about how the pipes have deteriorated to the point of requiring rehabilitation. The objectives of this study are: (1) develop a model for estimating corrosion rates and residual thickness of water pipes, (2) assess loads and stress affecting water pipes, (3) to estimate damage risk, and (4) calculate safety factors. Results of the study could help reduce rehabilitation costs and secure water quality after renovation. Thus it would contribute to the safe and stable operation and management of pipe networks by increasing the life of water pipes.
Identifer | oai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/ETD-TAMU-2011-12-10615 |
Date | 2011 December 1900 |
Creators | Lee, Sang Hyun |
Contributors | Singh, Vijay P. |
Source Sets | Texas A and M University |
Language | en_US |
Detected Language | English |
Type | thesis, text |
Format | application/pdf |
Page generated in 0.008 seconds