Return to search

Application of Bayesian Inference Techniques for Calibrating Eutrophication Models

This research aims to integrate mathematical water quality models with Bayesian inference techniques for obtaining effective model calibration and rigorous assessment of the uncertainty underlying model predictions. The first part of my work combines a Bayesian calibration framework with a complex biogeochemical model to reproduce oligo-, meso- and eutrophic lake conditions. The model accurately describes the observed patterns and also provides realistic estimates of predictive uncertainty for water quality variables. The Bayesian estimations are also used for appraising the exceedance frequency and confidence of compliance of different water quality criteria. The second part introduces a Bayesian hierarchical framework (BHF) for calibrating eutrophication models at multiple systems (or sites of the same system). The models calibrated under the BHF provided accurate system representations for all the scenarios examined. The BHF allows overcoming problems of insufficient local data by “borrowing strength” from well-studied sites. Both frameworks can facilitate environmental management decisions.

Identiferoai:union.ndltd.org:TORONTO/oai:tspace.library.utoronto.ca:1807/17238
Date26 February 2009
CreatorsZhang, Weitao
ContributorsArhonditsis, George
Source SetsUniversity of Toronto
Languageen_ca
Detected LanguageEnglish
TypeThesis
Format3356985 bytes, application/pdf

Page generated in 0.0022 seconds