Return to search

Modeling a Phosphorus Credit Trading Program in the Lake Okeechobee Watershed

Lake Okeechobee is the largest lake in the southeastern United States and is a central component of the hydrology and environment of the Everglades ecosystem in South Florida. The natural state of the lake has been degraded as wetlands and natural habitats in the Lake Okeechobee watershed have been replaced with farms, urban areas, and dairy operations. Excessive phosphorus loadings from these diverse sources have been identified as the leading causes of the lake’s impairment. For more than four decades, many resources have been allocated to regional and local restoration efforts to reduce phosphorus loadings into the lake. However, phosphorus loadings have not decreased and the recovery of the lake could take more time, particularly with today’s limited local budgets.
Market-based instruments, such as water quality trading programs, have emerged over the past decades to cost-effectively achieve water quality objectives in impaired watersheds. The main objective of this dissertation was to assess the environmental and economic benefits of implementing a phosphorus trading program in Lake Okeechobee watershed, compared to a conventional command-and-control approach. A comprehensive literature overview of nationally and internationally implemented trading programs was conducted to highlight advantages and challenges of these programs towards achieving water quality goals, and to outline the essential elements of a successful program. Furthermore, a modeling framework, integrating a hydrologic-water quality model with an economic model, was developed to assess the potential cost savings that trading might offer over a command-and-control approach. The modeling framework was applied in three priority basins of the Lake Okeechobee watershed. In each case, while developing trading scenarios to achieve phosphorus load reduction targets, the trading program was less expensive than the conventional command-and-control approach.
This research provided the foundation for stakeholders to better understand whether water quality trading has the potential to work in the Lake Okeechobee watershed and to facilitate the development of a pilot program. In addition, it offered some insights on the potential economic opportunities that pollution sources would have by participating in the trading program. The modeling framework developed in this dissertation could facilitate the assessment of future water quality trading programs in other watersheds.

Identiferoai:union.ndltd.org:fiu.edu/oai:digitalcommons.fiu.edu:etd-3481
Date01 September 2015
CreatorsCorrales, Juliana
PublisherFIU Digital Commons
Source SetsFlorida International University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceFIU Electronic Theses and Dissertations

Page generated in 0.0025 seconds