This thesis investigated the perception of salt taste in two novel strategies for inclusion of NaCl in liquid foods: water-in-oil (w/o) emulsions and mucoadhesive biopolymer solutions. The major factors influencing w/o emulsion stability and perception were evaluated and a response surface model was developed. The amount of dispersed aqueous phase was the most significant factor affecting stability and perception. NaCl stabilized the emulsions and depressed salt sensory perception at elevated concentrations due to its interaction with the emulsifier polyglycerol polyricinoleate. Future research should elaborate events during oral processing of w/o emulsions. Biopolymer mucoadhesive character and concentration effects were also investigated. Mucoadhesion did not enhance salt taste. Above c*, there was a significant depression of sensory intensity, enhanced in polymers with hyperentanglements in solution. The depressive concentration effect may mask the effects of mucoadhesion. Future research should also inspect the influence of thickened hydrocolloid microstructure on perception. / The Advanced Foods and Materials Network
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OGU.10214/3211 |
Date | 22 December 2011 |
Creators | Rietberg, Matthew Rodney |
Contributors | Duizer, Lisa |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Thesis |
Rights | http://creativecommons.org/licenses/by-nc-nd/2.5/ca/ |
Page generated in 0.0022 seconds