The explosion in stereoscopic video distribution increases the concerns over its copyright protection. Watermarking can be considered as the most flexible property right protection technology. The watermarking applicative issue is to reach the trade-off between the properties of transparency, robustness, data payload and computational cost. While the capturing and displaying of the 3D content are solely based on the two left/right views, some alternative representations, like the disparity maps should also be considered during transmission/storage. A specific study on the optimal (with respect to the above-mentioned properties) insertion domain is also required. The present thesis tackles the above-mentioned challenges. First, a new disparity map (3D video-New Three Step Search - 3DV-NTSS) is designed. The performances of the 3DV-NTSS were evaluated in terms of visual quality of the reconstructed image and computational cost. When compared with state of the art methods (NTSS and FS-MPEG) average gains of 2dB in PSNR and 0.1 in SSIM are obtained. The computational cost is reduced by average factors between 1.3 and 13. Second, a comparative study on the main classes of 2D inherited watermarking methods and on their related optimal insertion domains is carried out. Four insertion methods are considered; they belong to the SS, SI and hybrid (Fast-IProtect) families. The experiments brought to light that the Fast-IProtect performed in the new disparity map domain (3DV-NTSS) would be generic enough so as to serve a large variety of applications. The statistical relevance of the results is given by the 95% confidence limits and their underlying relative errors lower than er<0.1
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00917964 |
Date | 27 May 2013 |
Creators | Chammem, Afef |
Publisher | Institut National des Télécommunications |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | English |
Type | PhD thesis |
Page generated in 0.0017 seconds