Return to search

A new type of regularity with applications to the wave front sets / Nova vrsta regularnosti sa primenama na talasni front

<p>We introduce a family of smooth functions which are &quot;less regu-lar&quot; than the Gevrey functions, and study its basic properties. In particular&nbsp;we prove the standard results concerning algebra property and stability under finite order derivation. Moreover, we &nbsp;construct infnite order operators&nbsp;which leads us to the definition of class with ultradifferentiable property. We&nbsp;also prove that our classes are inverse-closed, and this result is the essential&nbsp;part in the proof of our main result presented in the final Chapter. Moreover,&nbsp;using the techniques of microlocal analysis, we introduce and investigate the<br />corresponding wave front sets, and the prove the results related to singular&nbsp;support of a distribution. Our main results shows how the singularities of&nbsp;solutions to partial differential equations (PDE&#39;s in short) propagate in the&nbsp;framework of our regularity.</p> / <p>U ovoj tezi defini&scaron;emo novu klasu glatkih funkcija i izučavamo njihove osnovne osobine. Pokazujemo da na&scaron;e klase imaju svojsto algebre kao i da su zatvorene u odnosu na delovanje operatora izvoda konačnog reda.Sta vi&scaron;e, konstrui&scaron;emo diferencijalne operatore beskonačnog reda i to nas dovodi do definicije ultradiferencijabilnih klasa funkcija. Takode dokazujemo osobinu zatvorenosti u odnosu na inverze, i taj rezultat je najvažniji deo u dokazu glavne teoreme koja je formulisana u poslednjoj glavi. Koristeći tehnike mikrolokalne analize, uvodimo i izučavamo odgovarajuće talasne frontove, i pokazujemo odgovarajuća tvrdjenja vezana za singularni nosač distribucije. Na&scaron; glavni rezultat pokazuje kako se prostiru singulariteti re&scaron;enja linearnih parcijalnih diferencijalnih jednačina u okviru na&scaron;e regularnosti.</p>

Identiferoai:union.ndltd.org:uns.ac.rs/oai:CRISUNS:(BISIS)101444
Date30 September 2016
CreatorsTomić Filip
ContributorsTeofanov Nenad, Pilipović Stevan, Prangoski Bojan
PublisherUniverzitet u Novom Sadu, Prirodno-matematički fakultet u Novom Sadu, University of Novi Sad, Faculty of Sciences at Novi Sad
Source SetsUniversity of Novi Sad
LanguageEnglish
Detected LanguageEnglish
TypePhD thesis

Page generated in 0.0018 seconds