This thesis presents the first research on polymer-segmented-cladding-fibre (PSCF), an emerging class of microstructured- optical-fibres (MOFs), which allows single-mode operation with ultra-large-core area. This research covers the modelling, design, fabrication and experiment of the polymer optical cross-fibre (4-period-SCF) whose cross-sectional view resembles a cross. A new wedge waveguide model has been formulated and applied to demonstrate that for any given parameters, the cross fibre gives the same performance for single-mode operation as the N-period-SCFs (for N = 2, 6 and 8). These fibres behave identically if the high-index segment angle, θ1, is the same and the low-index segment angular width, θ2, is sufficiently large for negligible adjacent mode coupling effects. This remarkable finding has significant ramifications for SCF fabrication, design and performance. Theoretical predictions confirmed by experiments demonstrated that a cross-fibre is all that needed to fabricate a large-core single-mode-fibre with no geometry-induced birefringence. The high-index outer ring effects on the cross fibre single-mode performance have been systematically investigated for the first time. The study reveals that the ring index value higher than its core index has very strong effects on single-mode performance. Within a narrow range of θ1, the minimum fibre length required for single-mode operation is reduced but outside this angle range, longer single-mode length is required. Furthermore, the fibre can be anti-guiding if θ1 exceeds the cutoff angle. Incorporating the fabrication constraints, the optimal cross-fibre design with high-index ring is achieved by optimising the relative index difference, high-index segment angle and core-cladding diameter ratio. Two preform-making techniques developed for the cross-fibres fabrication include the cladding-segment-in-tube method and the core-cladding-segment-in-tube method. The innovative approach in these methods overcomes the problems of bubble formation and fractures, which are related to the fibre structure complexity and the polymer intrinsic properties and their processing. It enables the successful drawing of single-mode fibres. This thesis reports the first experimental demonstration of single-mode operation of large-core cross-fibre. Three experimental studies with different cross-fibre designs have demonstrated (i) large-core single-mode operation, (ii) high-index ring effects on fibre performance and (iii) cross-fibre optimal design trial. Apart from this, the 8-period-SCF fibre performance has been demonstrated experimentally.
Identifer | oai:union.ndltd.org:ADTP/242516 |
Date | January 2009 |
Creators | Yeung, Anson Chi-Ming, Electrical Engineering & Telecommunications, Faculty of Engineering, UNSW |
Publisher | Publisher:University of New South Wales. Electrical Engineering & Telecommunications |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | http://unsworks.unsw.edu.au/copyright, http://unsworks.unsw.edu.au/copyright |
Page generated in 0.0017 seconds