Return to search

An Approach Based on Wavelet Decomposition and Neural Network for ECG Noise Reduction

Electrocardiogram (ECG) signal processing has been the subject of intense research in the past years, due to its strategic place in the detection of several cardiac pathologies. However, ECG signal is frequently corrupted with different types of noises such as 60Hz power line interference, baseline drift, electrode movement and motion artifact, etc. In this thesis, a hybrid two-stage model based on the combination of wavelet decomposition and artificial neural network is proposed for ECG noise reduction based on excellent localization features: wavelet transform and the adaptive learning ability of neural network. Results from the simulations validate the effectiveness of this proposed method. Simulation results on actual ECG signals from MIT-BIH arrhythmia database [30] show this approach yields improvement over the un-filtered signal in terms of signal-to-noise ratio (SNR).

Identiferoai:union.ndltd.org:CALPOLY/oai:digitalcommons.calpoly.edu:theses-1104
Date01 June 2009
CreatorsPoungponsri, Suranai
PublisherDigitalCommons@CalPoly
Source SetsCalifornia Polytechnic State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMaster's Theses

Page generated in 0.0019 seconds