Return to search

Fast Detection and Mitigation of Cascading Outages in the Power System

This dissertation studies the causes and mechanism of power system cascading outages and proposes the improved interactive scheme between system-wide and local levels of monitoring and control to quickly detect, classify and mitigate the cascading outages in power system.

A novel method for evaluating the vulnerability of individual components as well as the whole power system, which is named as weighted vulnerability analysis, is developed. Betweenness centrality is used to measure the importance of each bus and transmission line in the modeled power system network, which is in turn used to determine the weights for the weighted vulnerability index. It features fast reaction time and achieves higher accuracy when dealing with the cascading outage detection, classification and mitigation over the traditional methods.

The overload problem due to power flow redistribution after one line tripped is a critical factor contributing to the cascading outages. A parallel corridor searching method is proposed to quickly identify the most vulnerable components after tripping a transmission line. The power system topology model can be simplified into state graph after searching the domains for each generator, the commons for each bus, and links between the commons. The parallel corridor will be determined by searching the links and commons in system topology graph for the given state of power system operation.

During stressed operating state, either stable or unstable power swing may have impacts on distance relay judgment and lead to relay misoperation, which will result in the power system lines being tripped and as a consequence power system operating state becoming even more stressful. At the local level, an enhanced fault detection tool during power system swing is developed to reduce the chance of relay misoperation.

Comprehensive simulation studies have been implemented by using the IEEE 39-bus and 118-bus test systems. The results are promising because: The results from weighted vulnerability analysis could provide better system situational awareness and accurate information about the disturbance; The results form parallel corridor search method could identify the most vulnerable lines after power re-distribution, which will give operator time to take remedial actions; The results from new travelling wave and wavelet transform based fault detection could reduce the impact of relay misoperation.

Identiferoai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/ETD-TAMU-2011-12-10514
Date2011 December 1900
CreatorsPang, Chengzong
ContributorsKezunovic, Mladen
Source SetsTexas A and M University
Languageen_US
Detected LanguageEnglish
Typethesis, text
Formatapplication/pdf

Page generated in 0.0019 seconds