With the increased deterioration of infrastructure in this country, it has become important to find ways to maintain the strength and integrity of a structure over its design life. Being able to control the amount a structure displaces or vibrates during a seismic event, as well as being able to model this nonlinear behavior, provides a new challenge for structural engineers. This research proposes a wavelet-based adaptive neuro- fuzzy inference system for use in system identification and structural control of civil engineering structures. This algorithm combines aspects of fuzzy logic theory, neural networks, and wavelet transforms to create a new system that effectively reduces the number of sensors needed in a structure to capture its seismic response and the amount of computation time needed to model its nonlinear behavior. The algorithm has been tested for structural control using a three-story building equipped with a magnetorheological damper for system identification, an eight-story building, and a benchmark highway bridge. Each of these examples has been tested using a variety of earthquakes, including the El-Centro, Kobe, Hachinohe, Northridge, and other seismic events.
Identifer | oai:union.ndltd.org:wpi.edu/oai:digitalcommons.wpi.edu:etd-theses-2164 |
Date | 18 April 2012 |
Creators | Mitchell, Ryan |
Contributors | Yeesock Kim, Advisor, Tahar El-Korchi, Department Head, Leonard D. Albano, Committee Member |
Publisher | Digital WPI |
Source Sets | Worcester Polytechnic Institute |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Masters Theses (All Theses, All Years) |
Page generated in 0.0018 seconds