In any quantum dynamics method that approximates wave functions as a linearly combined basis set, non-orthogonality can be is a problem. It has been proven in previous studies that, by using the most standard form of Matching Pursuit in combination with a Gaussian wave packet ansatz, exact quantum-mechanical correspondence can be obtained for particle tunneling in one and two dimensions. This study is an attempt to prove that this approach can be generally applicable to systems of arbitrary dimension propagating with an an-harmonic potential, and that adaptive initial state sampling can be used to make the method even more computationally efficient.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-228505 |
Date | January 2014 |
Creators | Källman, Erik |
Publisher | Uppsala universitet, Teoretisk kemi |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | UPKEM E ; 19 |
Page generated in 0.0019 seconds